Skip to main content
Log in

Microbial electrochemistry and technology capacity building challenges—focus on Latin America & Caribbean and Africa

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Microbial electrochemistry and microbial electrochemical technology (MET) is an interdisciplinary research area that has been intensively growing in the past decades. However, in some regions like Latin America & Caribbean (LA & C) and Africa, capacity building within this realm is scarce. Hence, the advancement of research and development in this field is slower and less established than in Europe, Asia Pacific, or North America. This is of special concerns as MET may be important components of a biobased circular economy. Here, we highlight the specific challenges researchers in LA & C and Africa have to face and put these into perspective to their general research and education environment. Subsequently, we discuss possible solutions to these challenges and showcase examples on how to overcome these. We hope that thereby awareness can be created and how each researcher in the field around the globe can individually contribute to decrease the gap in capacity building in LA & C and Africa compared to other regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kurzweil P (2009) History | electrochemistry. Encycl Electrochem Power Sources:533–554. https://doi.org/10.1016/B978-044452745-5.00007-1

  2. Summers WC (2019) History of microbiology. Encycl Microbiol:593–607. https://doi.org/10.1016/B978-0-12-811736-1.00295-6

  3. Hazari Z, Potvin G, Cribbs JD et al (2017) Interest in STEM is contagious for students in biology, chemistry, and physics classes. Sci Adv 3:1–7. https://doi.org/10.1126/sciadv.1700046

    Article  Google Scholar 

  4. Borge L, Bröring S (2017) Exploring effectiveness of technology transfer in interdisciplinary settings: the case of the bioeconomy. Creat Innov Manag 26:311–322. https://doi.org/10.1111/caim.12222

    Article  Google Scholar 

  5. Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8:513–519. https://doi.org/10.1039/c4ee03359k

    Article  Google Scholar 

  6. Schröder U (2011) Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year-old discovery. J Solid State Electrochem 15:1481–1486. https://doi.org/10.1007/s10008-011-1395-7

    Article  CAS  Google Scholar 

  7. African Union (2015) Agenda 2063: the Africa we want - background note. African Union Comm, pp 1–20

    Google Scholar 

  8. Commission for Latin America and the Caribbean (ECLAC) (2022) Innovation for development: the key to transformative recovery in Latin America and the Caribbean. 1–101

  9. OECD et al (2022) Latin American Economic Outlook 2022 Towards a green and just transition

  10. Organisation for Economic Cooperation and Development (OECD). https://stats.oecd.org/ Accessed August 2023

  11. RICYT – Network for Science and Technology Indicators –Ibero-American and Inter-American– (RICYT). http://www.ricyt.org/en/ Accessed August 2023

  12. Comisión Económica para América Latina y el Caribe (CEPAL) (2022) Ciencia, tecnología e innovación: cooperación, integración y desafíos regionales. 1–35

  13. Centre for Science technology and innovation indicators (ceStii) on behalf of the D of S and innovation (DSi) (2022) The South African National Survey of Research and Experimental Development (R&D), Satistical Report 2020/2021. Stat Rep 2020/21

  14. Ciocca DR, Delgado G (2017) The reality of scientific research in Latin America; an insider’s perspective. Cell Stress Chaperones 22:847–852. https://doi.org/10.1007/s12192-017-0815-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Scopus Bibliographic database SCOPUS

  16. Dong Y, Ma H, Shen Z, Wang K (2017) A century of science: globalization of scientific collaborations, citations, and innovations. Proc ACM SIGKDD Int Conf Knowl Discov Data Min Part F1296:1437–1446. https://doi.org/10.1145/3097983.3098016

    Article  Google Scholar 

  17. UNESCO, Science, technology and innovation: 9.5.2 Researchers (in full-time equivalent) per million inhabitants. http://data.uis.unesco.org/index.aspx?queryid=3685# Accessed August 2023

  18. WISMET seminar series, WISMET. https://is-met.org/wismet/ Accessed August 2023

  19. Foley G (2016) Reflections on interdisciplinarity and teaching chemical engineering on an interdisciplinary degree programme in biotechnology. Educ Chem Eng 14:35–42. https://doi.org/10.1016/j.ece.2015.11.002

    Article  Google Scholar 

  20. Jadhav DA, Park SG, Pandit S et al (2022) Scalability of microbial electrochemical technologies: applications and challenges. Bioresour Technol 345:126498. https://doi.org/10.1016/j.biortech.2021.126498

    Article  CAS  PubMed  Google Scholar 

  21. NACE International (2012) International measures of prevention, application, and economics of corrosion technologies study. 3

  22. Montiel AM, Méndez E, Rodríguez-valadez FJ, González-fuentes MA (2023) Las bacterias también son útiles. ¿Que es una Celda de Combustible Microbiana? RD-ICUAP 9:77–88

    Article  Google Scholar 

  23. Mclean MA, Mcleod E, Pronovost K et al (2018) A clean energy teaching tool: microbial fuel cells! 39:1–10

  24. Tan TTM, Lee YJ (2022) Building improvised microbial fuel cells: a model integrated STEM curriculum for middle-school learners in Singapore. Educ Sci 12. https://doi.org/10.3390/educsci12060417

  25. Grandrath R, Bohrmann-Linde C (2019) Teaching sustainability in the chemistry classroom: exploring fuel cells in simple hands-on experiments with hydrogen, sugar and alcohol. World J Chem Educ 7:172–178. https://doi.org/10.12691/wjce-7-2-17

    Article  CAS  Google Scholar 

  26. Clarivate Web of Science. © Copyright Clarivate 2023. All rights reserved. https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/ Accessed August 2023

  27. Larios D, Brooks TM, Macfarlane NBW, Roy S (2020) Access to scientific literature by the conservation community. PeerJ 2020:1–26. https://doi.org/10.7717/peerj.9404

    Article  Google Scholar 

  28. Nyokong T, Limson J (2013) An education in progress. Nat Nanotechnol 8:789–791. https://doi.org/10.1038/nnano.2013.235

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Urine-tricity: electricity from urine and sludge, Melinda & Bill Gates Foundation. https://gcgh.grandchallenges.org/grant/urine-tricity-electricity-urine-and-sludge Accessed August 2023

  30. Fawcett J (2013) Thoughts about multidisciplinary, interdisciplinary, and transdisciplinary research. Nurs Sci Q 26:376–379. https://doi.org/10.1177/0894318413500408

    Article  PubMed  Google Scholar 

  31. Forero DA, Trujillo ML, González-Giraldo Y, Barreto GE (2020) Scientific productivity in neurosciences in Latin America: a scientometrics perspective. Int J Neurosci 130:398–406. https://doi.org/10.1080/00207454.2019.1692837

    Article  CAS  PubMed  Google Scholar 

  32. Material Science course 420, Zewail City of Science and Technology

  33. Kempler PA, Boettcher SW, Ardo S (2021) Reinvigorating electrochemistry education. iScience 24:102481. https://doi.org/10.1016/j.isci.2021.102481

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ciriminna R, Ghahremani M, Varmaghani F et al (2023) Improving education in electrochemistry via a modeling approach and focusing on green chemistry applications. Sustain Chem Pharm 31. https://doi.org/10.1016/j.scp.2022.100931

  35. Turner KL, He S, Marchegiani B et al (2023) Around the world in electrochemistry: a review of the electrochemistry curriculum in high schools. J Solid State Electrochem. https://doi.org/10.1007/s10008-023-05548-0

  36. Freeman S, Eddy SL, McDonough M et al (2014) Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci U S A 111:8410–8415. https://doi.org/10.1073/pnas.1319030111

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ibanez JG, Contreras-Ruiz MA (2023) Distance learning of introductory electrochemistry and corrosion: home experimentation. J Solid State Electrochem. https://doi.org/10.1007/s10008-023-05445-6

  38. Falk Harnisch, Tom Sleutels, Annemiek ter Heijne (2023) Basic electrochemistry for biotechnology, Wiley-VCH, 2023, ISBN 3527348085, 9783527348084

  39. Nabisab Mujawar Mubarak, Abdul Sattar, Shaukat Ali Mazari, Sabzoi Nizamuddin (2023) Advanced nanomaterials and nanocomposites for bioelectrochemical systems, Elsevier, 2023, ISBN: 9780323904049

  40. Jadhav DA, Pandit S, Gajalakshmi S, Shah MP (2022) Scaling up of microbial electrochemical systems from reality to scalability. In: A volume in Advances in Green and Sustainable Chemistry. Elsevier

    Google Scholar 

  41. Mohan SV, Varjani S, Pandey A (2018) Microbial electrochemical technology: sustainable platform for fuels, chemicals and remediation. Elsevier

    Google Scholar 

  42. Kundu PP, Dutta K (2018) Progress and recent trends in microbial fuel cells. Elsevier

    Google Scholar 

  43. Aryal N, Zhang Y, Patil SAPD (2023) Material-microbes interactions. Environmental Biotechnological Perspective. A volume in Developments in Applied Microbiology and Biotechnology. Academic Press

    Google Scholar 

  44. Rahimnejad M (2023) Biological fuel cells fundamental to applications. Elsevier

    Google Scholar 

  45. Scott K, Yu EH (2015) Microbial electrochemical and fuel cells: fundamentals and applications

  46. Gildemyn S, Luther AK, Andersen SJ et al (2015) Electrochemically and bioelectrochemically induced ammonium recovery. J Vis Exp:52405. https://doi.org/10.3791/52405

  47. Gimkiewicz C, Harnisch F (2013) Waste water derived electroactive microbial biofilms: growth, maintenance, and basic characterization. J Vis Exp 50800:50800. https://doi.org/10.3791/50800

    Article  CAS  Google Scholar 

  48. Electrochemical biosensing. JOVE Sci Educ Database Bioingeniería 2023

  49. Cyclic Voltammetry (CV). JOVE Sci Educ Database Química analítica 2023

  50. Komorek R, Wei W, Yu X et al (2017) In situ characterization of shewanella oneidensis mr1 biofilms by SALVI and ToF-SIMS. J Vis Exp 2017:55944. https://doi.org/10.3791/55944

    Article  CAS  Google Scholar 

  51. Meredith S, Xu S, Meredith MT, Minteer SD (2012) Hydrophobic salt-modified nafion for enzyme immobilization and stabilization. J Vis Exp 3949:3949. https://doi.org/10.3791/3949

    Article  CAS  Google Scholar 

  52. Electrochemical measurements of supported catalysts using a potentiostat/galvanostat. JOVE Sci Educ Database Química analítica 2023

  53. Benshlomo O (2023) Standard electrode potentials. JOVE Sci Educ Database Química

    Google Scholar 

  54. Yates M, Strycharz-Glaven S, Golden J et al (2018) Characterizing electron transport through living biofilms. J Vis Exp 2018:54671. https://doi.org/10.3791/54671

    Article  CAS  Google Scholar 

  55. Tokunou Y, Hashimoto K, Okamoto A (2018) Electrochemical detection of deuterium kinetic isotope effect on extracellular electron transport in Shewanella oneidensis MR-1. J Vis Exp 2018:57584. https://doi.org/10.3791/57584

    Article  CAS  Google Scholar 

  56. Okamoto A, Rowe A, Deng X, Nealson KH (2018) Self-standing electrochemical set-up to enrich anode-respiring bacteria on-site. J Vis Exp 2018:57632. https://doi.org/10.3791/57632

    Article  CAS  Google Scholar 

  57. (2023) Proton exchange membrane fuel cells. JOVE Sci Educ Database Ciencias Ambient

  58. Pérgola M, Sacco NJ, Bonetto MC et al (2023) A laboratory experiment for science courses: Sedimentary microbial fuel cells. Biochem Mol Biol Educ 51:221–229. https://doi.org/10.1002/bmb.21702

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Cabezas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabezas, A., Cercado, B., Chouchane, H. et al. Microbial electrochemistry and technology capacity building challenges—focus on Latin America & Caribbean and Africa. J Solid State Electrochem 28, 1023–1039 (2024). https://doi.org/10.1007/s10008-023-05761-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05761-x

Keywords

Navigation