Skip to main content
Log in

Harmfulness of polysemantic terms in electrochemistry

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Connotations of very basic electrochemical terms such as cathode, anode, and capacitance vary with the field of their application. The variability of the connotations has an adverse effect on the teaching. Students with a firm knowledge of IUPAC definitions of the names of electrodes and of the physical meaning of the capacitance stumble over “cathodes” and “anodes” of the rechargeable batteries in which directions of the current and the corresponding reaction switch multiply in the operation cycles. Characterization of various objects having electrical properties fundamentally deviating from those of capacitors with units of capacitance introduces an even greater confusion. The problem is presented with solutions of how to avoid the further erosion of the edifice of electrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parsons R (1974) Electrochemical nomenclature. Pure Appl Chem 37:499–516. https://doi.org/10.1351/pac197437040499

    Article  CAS  Google Scholar 

  2. Wang L, Zheng J (2020) Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries. Mater Today Adv 7:100078. https://doi.org/10.1016/j.mtadv.2020.100078

    Article  Google Scholar 

  3. Tikekar MD, Choudhury S, Tu Z, Archer LA (2016) Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy 1:16114. https://doi.org/10.1038/nenergy.2016.114

    Article  ADS  CAS  Google Scholar 

  4. Abraham KM (1982) Intercalation positive electrodes for rechargeable sodium cells. Solid State Ionics 7:199–212. https://doi.org/10.1016/0167-2738(82)90051-0

    Article  CAS  Google Scholar 

  5. Ohzuku T, Brodd RJ (2007) An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources 174:449–456. https://doi.org/10.1016/j.jpowsour.2007.06.154

    Article  CAS  Google Scholar 

  6. Zaghib K, Simoneau M, Armand M, Gauthier M (1999) Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries J Power Sources 81–82:300–305. https://doi.org/10.1016/S0378-7753(99)00209-8

  7. Besenhard JO, Winter M (2002) Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem 3:155–159. https://doi.org/10.1002/1439-7641(20020215)3:2%3c155::AID-CPHC155%3e3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  8. Barchasz C, Mesguich F, Dijon J, Leprêtre JC, Patoux S, Alloin F (2012) Novel positive electrode architecture for rechargeable lithium/sulfur batteries. J Power Sources 211:19–26. https://doi.org/10.1016/j.jpowsour.2012.03.062

    Article  CAS  Google Scholar 

  9. Abouimrane A, Dambournet D, Chapman KW, Chupas PJ, Weng W, Amine K (2012) A new class of lithium and sodium rechargeable batteries based on selenium and selenium–sulfur as a positive electrode. J Am Chem Soc 134:4505–4508. https://doi.org/10.1021/ja211766q

    Article  CAS  PubMed  Google Scholar 

  10. Wangda Li W, Song B, Manthiram A (2017) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46:3006–3059. https://doi.org/10.1039/C6CS00875E

    Article  PubMed  Google Scholar 

  11. Siamionau UV, Aniskevich YM, Ragoisha GA, Streltsov EA (2023) MnO2 electrodeposition at the positive electrode of zinc-ion aqueous battery containing Zn2+ and Mn2+ cations. J Solid State Electrochem 27:1911–1918. https://doi.org/10.1007/s10008-023-05467-0

    Article  CAS  Google Scholar 

  12. Inzelt G (2023) Loose building blocks in the edifice of electrochemistry in a historical perspective and their impact on the teaching. J Solid State Electrochem. https://doi.org/10.1007/s10008-023-05502-0

    Article  Google Scholar 

  13. Bondarenko AS, Ragoisha GA (2013) EIS Spectrum Analyser. http://www.abc.chemistry.bsu.by/vi/analyser/

  14. Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Springer, N.Y

    Book  Google Scholar 

  15. Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic / Plenum Publishers, New York, Scientific fundamentals and technological applications

    Book  Google Scholar 

  16. Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66(1997):1–14. https://doi.org/10.1016/S0378-7753(96)02474-3

    Article  CAS  Google Scholar 

  17. Conway BE, Pell WG (2003) Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J Solid State Electrochem 7:637–644. https://doi.org/10.1007/s10008-003-0395-7

    Article  CAS  Google Scholar 

  18. Conway BE, Barber J, Morin S (1998) Comparative evaluation of surface structure specificity of kinetics of UPD and OPD of H at single-crystal Pt electrodes. Electrochim Acta 44:1109–1125. https://doi.org/10.1016/s0013-4686(98)00214-x

    Article  CAS  Google Scholar 

  19. Ragoisha GA, Bondarenko AS (2003) Potentiodynamic electrochemical impedance spectroscopy. Copper underpotential deposition on gold. Electrochem Commun 5:392–395. https://doi.org/10.1016/S1388-2481(03)00075-4

    Article  CAS  Google Scholar 

  20. Ragoisha GA (2015) Potentiodynamic electrochemical impedance spectroscopy for underpotential deposition processes. Electroanalysis 27:855–863. https://doi.org/10.1002/elan.201400648

    Article  CAS  Google Scholar 

  21. Bondarenko AS, Ragoisha GA, Osipovich NP, Streltsov EA (2005) Potentiodynamic electrochemical impedance spectroscopy of lead upd on polycrystalline gold and on selenium atomic underlayer. Electrochem Commun 7:631–636. https://doi.org/10.1016/j.elecom.2005.04.001

    Article  CAS  Google Scholar 

  22. Ragoisha GA (2020) Challenge for electrochemical impedance spectroscopy in the dynamic world. J Solid State Electrochem 24:2171–2172. https://doi.org/10.1007/s10008-020-04679-y

    Article  CAS  Google Scholar 

  23. Brousse T, Bélanger D, Long JW (2015) To be or not to be pseudocapacitive? J Electrochem Soc 162:A5185–A5189. https://doi.org/10.1149/2.0201505jes

    Article  CAS  Google Scholar 

  24. Ragoisha GA, Aniskevich YM (2016) False capacitance of supercapacitors. arXiv:1604.08154. https://doi.org/10.48550/arXiv.1604.08154

  25. The International System of Units, 9th edition (2019) Bureau international des poids et mesures, ISBN 978–92–822–2272–0. https://www.bipm.org/en/publications/si-brochure

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genady Ragoisha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragoisha, G. Harmfulness of polysemantic terms in electrochemistry. J Solid State Electrochem 28, 1305–1311 (2024). https://doi.org/10.1007/s10008-023-05711-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05711-7

Keywords

Navigation