Skip to main content
Log in

Quinoxaline derivatives as cathode for aqueous zinc battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Functional groups adjacent to the redox active center would have an uncompromising effect on the diffusion kinetics of the charge carriers. They expedite the diffusion process by extensive H-bonding, charge delocalization, and functional group polarization by tautomerism or resonance which would have long held influence on the electrochemical performance of the material. Herein, we introduced a ketonic functional group adjacent to the quinoxaline redox center which accelerates the diffusion of the charge carriers. Quinoxaline nuclei with free rotating phenyl rings (DAB) exhibited a specific capacitance of 156.4 mAhg−1 at 50 mAg−1 which was found drastically decreased due to the excessive dissolution of the material as well as the uncontrolled ring flipping of the phenyl rings. By introducing a ketone functional group and stagnant phenyl rings with a fused ring system the specific capacitance was found to be improved to a considerable extent. The quinoxaline redox center with a fused ring system and symmetrically placed ketone functional groups (TKQ) exhibited a specific capacitance of 286.7 mAhg−1 at 50 mAg−1 and remained 224.8 mAhg−1 after prolonged 1000 cycles, with 95% coulombic efficiency and 79.4% retention in the discharge capacity. The study suggests that smart molecular engineering is necessary for excellent rate performance, rate reversibility, coulombic efficiency, and capacity retention.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Poizot P, Gaubicher J, Renault S, Dubois L, Liang Y, Yao Y (2020) Chem Rev 120:6490–6557

    Article  CAS  PubMed  Google Scholar 

  2. Schon TB, McAllister BT, Li P-F, Seferos DS (2016) Chem Soc Rev 45:6345–6404

    Article  CAS  PubMed  Google Scholar 

  3. Friebe C, Lex-Balducci A, Schubert US (2019) Chemsuschem 12:4093–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liang Y, Yao Y (2018) Joule 2:1690–1706

    Article  CAS  Google Scholar 

  5. Bhosale ME, Chae S, Kim JM, Choi JY (2018) J Mater Chem A 6:19885–19911

    Article  CAS  Google Scholar 

  6. Novák P, Müller K, Santhanam KSV, Haas O (1997) Chem Rev 97:207–282

    Article  PubMed  Google Scholar 

  7. Wang Q, Xu X, Yang G, Liu Y, Yao X (2020) Chem Commun 56:11859–11862

    Article  CAS  Google Scholar 

  8. Nishide H, Suga T, Battery OR (2005) Electrochem. Soc Interface 14:32–36

    CAS  Google Scholar 

  9. Nguyen TP, Easley AD, Kang N, Khan S, Lim SM, Rezenom YH, Wang S, Tran DK, Fan J, Letteri RA, He X et al (2021) Nature 593:61–66

  10. Tu XC, Wu Z, Geng X, Qu L-L, Sun H-M, Lai C, Li D-S, Zhang S (2021) J Mater Chem A 9:18306–18312

    Article  CAS  Google Scholar 

  11. Chola NM, Nagarale RK (2022) New J Chem 46:22593–22601

    Article  CAS  Google Scholar 

  12. Patil N, Mavrandonakis A, Jérôme C, Detrembleur C, Casado N, Mecerreyes D, Palma J, Marcilla R (2021) J Mater Chem A 9:505–514

    Article  CAS  Google Scholar 

  13. Wang Y, Yang Z, Xia T, Pan G, Zhang L, Chen H, Zhang J (2019) ChemElectroChem 6:5080–5085

    Article  CAS  Google Scholar 

  14. Man Z, Li P, Zhou D, Zang R, Wang S, Li P, Liu S, Li X, Wu Y, Liang X, Wang G (2019) J Mater Chem A 7:2368–2375

  15. Chen Z, Sun P, Bai P, Su H, Yang J, Liu Y, Xu Y, Geng Y (2021) Chem Commun 57:10791–10794

    Article  CAS  Google Scholar 

  16. Han C, Li H, Shi R, Zhang T, Tong J, Li J, Li B (2019) J Mater Chem A 7:23378–23415

  17. Zhang S, Li Z, Cai L, Li Y, Pol VG (2021) Chem Eng J 416:129171

    Article  CAS  Google Scholar 

  18. Chola NM, Nagarale RK (2022) J Electrochem Soc Meet Abstr MA 2022–02:21

    Article  Google Scholar 

  19. Nikumbe DY, Sreenath S, Paramasivam S, Pawar CM, Bavdane PP, Kumar SS, Nagarale RK (2021) J Energy Storage 40:102689

  20. Zhang J, Yang Z, Shkrob IA, Assary RS, Tung SO, Silcox B, Duan W, Zhang J, Su CC, Hu B, Pan B et al (2017) Adv Energy Mater 7:1701272

  21. Huang J, Su L, Kowalski JA, Barton JL, Ferrandon M, Burrell AK, Brushett FR, Zhang L (2015) J Mater Chem A 14971–14976

  22. Tabor DP, Gómez-Bombarelli R, Tong L, Gordon RG, Aziz MJ, Aspuru-Guzik A (2019) J Mater Chem A 7:12833–12841

  23. Kim H, Goodson III T, Zimmerman PM (2016) J Phys Chem C 120:22235–22247

  24. Wang S, Wang L, Zhu Z, Hu Z, Zhao Q, Chen J (2014) Angew Chem Int Ed 53:5892–5896

    Article  CAS  Google Scholar 

  25. Delaporte N, Trudeau ML, Bélanger D, Zaghib K (2020) Materials 13:942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Assary RS, Zhang L, Huang J, Curtiss LA (2016) J Phys Chem C 120:14531–14538

    Article  CAS  Google Scholar 

  27. Marenich AV, Ho J, Coote ML, Cramer CJ, Truhlar DG (2014) Phys Chem Chem Phys 16:15068–15106

    Article  CAS  PubMed  Google Scholar 

  28. Mao Y, Head-Gordon M, Shao Y (2018) Chem Sci 9:8598–8607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Conradie J (2015) J Phys: Conf Ser 633:012045

    Google Scholar 

  30. Xie J, Rui X, Gu P, Wu J, Xu ZJ, Yan Q, Zhang Q (2016) ACS Appl Mater Interfaces 8:16932–16938

    Article  CAS  PubMed  Google Scholar 

  31. Wang B, Zhang Y, Zhu Y, Shen Y-M, Wang W, Chen Z, Cao J, Xu J (2020) J Power Sources 451:227788

    Article  CAS  Google Scholar 

  32. Wang Q, Liu Y, Chen P (2020) J Power Sources 468:228401

    Article  CAS  Google Scholar 

  33. Chao D, Liang P, Chen Z, Bai L, Shen H, Liu X, Xia X, Zhao Y, Savilov SV, Lin J, Shen ZX (2016) ACS Nano 10:10211–10219

    Article  CAS  PubMed  Google Scholar 

  34. Lin Z, Shi H-Y, Lin L, Yang X, Wu W, Sun X (2021) Nat Commun 12:4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chola NM, Sreenath S, Dave B, Nagarale RK (2019) Electrophoresis 40:2979–2987

    Article  CAS  PubMed  Google Scholar 

  36. Schied T, Nickol A, Heubner C, Schneider M, Michaelis A, Bobeth M, Cuniberti G (2021) ChemPhysChem 22:885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He P, Quan Y, Xu X, Yan M, Yang W, An Q, He L, Mai L (2017) Small 13:1702551

    Article  Google Scholar 

  38. Renz D, Cronau M, Roling B (2021) J Phys Chem C 125:2230–2239

    Article  CAS  Google Scholar 

  39. Cabañero MA, Boaretto N, Röder M, Müller J, Kallo J, Latz A (2018) J Electrochem Soc 165:A847–A855

    Article  Google Scholar 

  40. Lee YS, Ryu K-S (2017) Sci Rep 7:16617

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tang B, Zhao J, Xu J-F, Zhang X (2020) Chem Sci 11:1192–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim B, Storch G, Banerjee G, Mercado BQ, Castillo-Lora J, Brudvig GW, Mayer JM, Miller SJ (2017) J Am Chem Soc 139:15239–15244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chola NM, Nagarale RK (2022) J Electrochem Soc 169:040534

    Article  CAS  Google Scholar 

  44. Leung P, Aili D, Xu Q, Rodchanarowan A, Shah AA (2018) Sustainable Energy Fuels 2:2252–2259

    Article  CAS  Google Scholar 

  45. Gorbachev V, Tsybizova A, Miloglyadova L, Chen P (2022) J Am Chem Soc 144:9007–9022

    Article  CAS  PubMed  Google Scholar 

  46. Dereka B, Lewis NHC, Zhang Y, Hahn NT, Keim JH, Snyder SA, Maginn EJ, Tokmakoff A (2022) J Am Chem Soc 144:8591–8604

    Article  CAS  PubMed  Google Scholar 

  47. Haldar S, Wang M, Bhauriyal P, Hazra A, Khan AH, Bon V, Isaacs MA, De A, Shupletsov L, Boenke T, Grothe J, Brunner HT, E., Feng X. Dong, R., Schneemann A., Kaskel S., (2022) J Am Chem Soc 144:9101–9112

    Article  CAS  PubMed  Google Scholar 

  48. Sebti E, Evans HA, Chen H, Richardson PM, White KM, Giovine R, Koirala KP, Xu Y, Gonzalez-Correa E, Wang C, Brown CM, Cheetham AK, Canepa P, Clément RJ (2022) J Am Chem Soc 144:5795–5811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tuttle MR, Davis ST, Zhang S (2021) ACS Energy Lett 6:643–649

    Article  CAS  Google Scholar 

  50. Tang M, Zhu S, Liu Z, Jiang C, Wu Y, Li H, Wang B, Wang E, Ma J, Wang C (2018) Chem 4:2600–2614

  51. Qiao L, Rodriguez Pena S, Martínez-Ibañez M, Santiago A, Aldalur I, Lobato E, Sanchez-Diez E, Zhang Y, Manzano H, Zhu H, Forsyth M et al (2022) J Am Chem Soc jacs.2c02260

  52. Chao D, Liang P, Chen Z, Bai L, Shen H, Liu X, Xia X, Zhao Y, Savilov SV, Lin J, Shen ZX (2016) ACS Nano 10:10211–10219

  53. Chen C, Li Z, Xu Y, An Y, Wu L, Sun Y, Liao H, Zheng K, Zhang X (2021) ACS Sustainable Chem Eng 9:13268–13276

    Article  CAS  Google Scholar 

  54. Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US (2016) Chem Rev 116:9438–9484

    Article  CAS  PubMed  Google Scholar 

  55. Chola NM, Nagarale RK (2020) J Electrochem Soc 167:100552

    Article  CAS  Google Scholar 

  56. Chola NM, Nagarale RK (2022) Mater Adv 3:4310–4321

    Article  CAS  Google Scholar 

  57. Chola NM, Singh V, Verma V, Nagarale RK (2022) J Electrochem Soc 169:020503

    Article  CAS  Google Scholar 

  58. Chola NM, Nagarale RK (2021) J Electrochem Soc 168:100501

    Article  CAS  Google Scholar 

  59. Kundu D, Oberholzer P, Glaros C, Bouzid A, Tervoort E, Pasquarello A, Niederberger M (2018) Chem Mater 30:3874–3881

    Article  CAS  Google Scholar 

  60. Glatz H, Lizundia E, Pacifico F, Kundu D (2019) ACS Appl Energy Mater 2:1288–1294

    Article  CAS  Google Scholar 

  61. Häupler B, Rössel C, Schwenke AM, Winsberg J, Schmidt D, Wild A, Schubert US (2016) NPG Asia Mater 8:e283–e283

  62. Dibden JW, Meddings N, Owen JR, Garcia-Araez N (2018) ChemElectroChem 5:445–454

    Article  CAS  Google Scholar 

  63. Kim J, Park S, Hwang S, Yoon WS (2022) J Electrochem Sci Technol 13:19–31

  64. Das PR, Komsiyska L, Osters O, Wittstock G (2015) J Electrochem Soc 162:A674–A678

    Article  CAS  Google Scholar 

  65. Liu Y, Xie L, Zhang W, Dai Z, Wei W, Luo S, Chen X, Chen W, Rao F, Wang L, Huang Y (2019) ACS Appl Mater Interfaces 11:30943–30952

    Article  CAS  PubMed  Google Scholar 

  66. Shi H-Y, Ye Y-J, Liu K, Song Y, Sun X (2018) Angew Chem Int Ed 57:16359–16363

    Article  CAS  Google Scholar 

  67. Li H, Sun M, Zhang T, Fang Y, Wang G (2014) J Mater Chem A 2:18345–18352

    Article  CAS  Google Scholar 

  68. Ko SH, Kim SW, Lee YJ (2021) Sci Rep 11:21101

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bizeray AM, Howey DA, Monroe CW (2016) J Electrochem Soc 163:E223–E229

    Article  CAS  Google Scholar 

  70. Qiu P, Agne MT, Liu Y, Zhu Y, Chen H, Mao T, Yang J, Zhang W, Haile SM, Zeier WG, Janek J, Uher C, Shi X, Chen L, Snyder GJ (2018) Nat Commun 9:2910

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang Y, Du N, Yang D (2019) Nanoscale 11:19086–19104

    Article  CAS  PubMed  Google Scholar 

  72. Wang A, Kadam S, Li H, Shi S, Qi Y (2018) npj Comput Mater 4:15

  73. Desai P, Huang J, Hijazi H, Zhang L, Mariyappan S, Tarascon JM (2021) Adv Energy Mater 11:2101490

  74. Luo H, Papaioannou N, Salvadori E, Roessler MM, Ploenes G, van Eck ER, Tanase LC, Feng J, Sun Y, Yang Y, Danaie M et al (2019) ChemSusChem 12:4432–4441

  75. Jensen AC, Olsson E, Au H, Alptekin H, Yang Z, Cottrell S, Yokoyama K, Cai Q, Titirici MM, Drew AJ (2020) J Mater Chem A 8:743–749

  76. Ren W, Cheng J, Ou H, Huang C, Titirici M, Wang X (2019) mChemSusChem 12:3257–3262

Download references

Acknowledgements

The director, CSIR-CSMCRI, is acknowledged for his gracious support and inspiration. The divisional chair of MSST department and the Analytical & Instrumentation Facility of CSMCRI-CSIR Bhavnagar are also greatly acknowledged.

Funding

RKN thanks for the financial support grant no. DST/TMD/MES/2K18/194(G) from Technology Mission Division, Energy and Water, and CSIR project number MLP-0320. CSMCRI-CSIR manuscript number 116/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajaram K. Nagarale.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10008_2023_5689_MOESM1_ESM.docx

Supplementary file1 The supporting information contains physical and spectral studies of the compounds (NMR, Mass spectra, cyclic voltammograms), figures, and the reference comparison table. (DOCX 15678 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chola, N.M., Nagarale, R.K. Quinoxaline derivatives as cathode for aqueous zinc battery. J Solid State Electrochem 28, 419–431 (2024). https://doi.org/10.1007/s10008-023-05689-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05689-2

Keywords

Navigation