Skip to main content
Log in

A simple electrochemical biosensor based on HS-β-cyclodextrin coordination methanobactin/gold nanoparticles for highly sensitive detection of nitrite

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nitrite (\(\mathrm{{NO}_2}^{-}\)) is often added to food as a food additive, but the overuse of nitrite will pose a threat to human health, so it is important to establish a rapid detection method for nitrite in related food. In this work, gold nanoparticles (AuNPs) were synthesized by in situ reduction of methanobactin (Mb); it is a small bioactive peptide. HS-β-cyclodextrin (HS-β-CD) with supramolecular recognition function was coordinated with Mb/AuNPs by Au-S bond to form HS-β-CD@Mb/AuNPs. HS-β-CD@Mb/AuNPs were modified onto the surface of gold electrode by electrodeposition to successfully prepare the biosensor (HS-β-CD@Mb/AuNPs/Au). The HS-β-CD@Mb/AuNPs/Au was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultraviolet spectroscopy (UV), Fourier infrared spectroscopy (FTIR), fluorescence spectrometer (FL), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The established biosensor was successfully applied to the detection of nitrite in real samples, and the mechanism of NO2 oxidation was analyzed. The detection limit of the established detection system was as low as 0.013 μM in the linear range of 0.1–10,000 μM, the recoveries were 96.53–102.54%, and the selectivity of the sensor is demonstrated by anti-interference experiment. Also compared to the previously described electrochemical sensors, the newly developed ones have better sensitivity (50.7137 μA μM−1 cm−2) and selectivity. These results suggest that the work provides a new way for the accurate monitoring of nitrite in environmental and food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ding Z, Johanningsmeier SD, Price R, Reynolds R, Truong VD, Payton SC, Breidt F (2018) Evaluation of nitrate and nitrite contents in pickled fruit and vegetable products. Food Control 90:304–311. https://doi.org/10.1016/j.foodcont.2018.03.005

    Article  CAS  Google Scholar 

  2. Wang Q, Ma S, Huang H, Cao A, Li M, He L (2018) Highly sensitive and selective spectrofluorimetric determination of nitrite in food products with a novel fluorogenic probe. Food Control 63:117–121. https://doi.org/10.1016/j.foodcont.2015.11.023

    Article  CAS  Google Scholar 

  3. Hung Y, Verbeke W, de Kok TM (2018) Stakeholder and consumer reactions towards innovative processed meat products: insights from a qualitative study about nitrite reduction and phytochemical addition. Food Control 60:690–698. https://doi.org/10.1016/j.foodcont.2015.09.002

    Article  CAS  Google Scholar 

  4. He BS, Yan DD (2018) One-pot preparation of wavy graphene/Au composites and their application for highly sensitive detection of nitrite. Anal Methods 10:3654–3659. https://doi.org/10.1039/C8AY01215F

    Article  CAS  Google Scholar 

  5. Burden EHWJ (1961) The toxicology of nitrates and nitrites with particular reference to the potability of water supplies. Analyst 86:429–433

    Article  CAS  PubMed  Google Scholar 

  6. Zhang H, Zhang L, Lu C, Zhao L, Zheng Z (2012) CdTe nanocrystals-enhanced chemiluminescence from peroxynitrous acid–carbonate and its application to the direct determination of nitrite. Spectrochimica Acta A 85:217–222. https://doi.org/10.1016/j.saa.2011.09.063

    Article  CAS  Google Scholar 

  7. Zhao J, Wang J, Yang Y, Lu Y (2015) The determination of nitrate and nitrite in human urine and blood by high-performance liquid chromatography and cloud-point extraction. J Chromatographic Sci 53:1169–1177. https://doi.org/10.1093/chromsci/bmu212

    Article  CAS  Google Scholar 

  8. Wang X, Tan W, Ji H, Liu F, Wu D, Ma J, Kong Y (2018) Facile electrosynthesis of nickel hexacyanoferrate/poly (2, 6-diaminopyridine) hybrids as highly sensitive nitrite sensor. Sensors Actuators B-Chem 264:240–248. https://doi.org/10.1016/j.snb.2018.02.171

    Article  CAS  Google Scholar 

  9. Lyu W, Zhang X, Zhang Z, Chen X, Zhou Y, Chen H, Ding M (2019) A simple and sensitive electrochemical method for the determination of capsaicinoids in chilli peppers. Sensors Actuators B- Chem 288:65–70. https://doi.org/10.1016/j.snb.2019.02.104

    Article  CAS  Google Scholar 

  10. Gu Q, Chen X, Lu C, Ye C, Li W, Chu J, Xu B (2022) Electrochemical determination of capsaicinoids content in soy sauce and pot-roast meat products by glassy carbon electrode modified with MXene/PDDA-carbon nanotubes/β-cyclodextrin. Food Control 138:109022. https://doi.org/10.1016/j.foodcont.2022.109022

    Article  CAS  Google Scholar 

  11. Jilani BS, Malathesh P, Mruthyunjayachari CD (2020) Cobalt (II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: a voltammetric study. Mater Chem and Phys 239:121920. https://doi.org/10.1016/j.matchemphys.2019.121920

    Article  CAS  Google Scholar 

  12. Jilani BS, Malathesh P, Mruthyunjayachari CD, Reddy KV (2020) Cobalt (II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: a voltammetric study. Mate Chem and Phys 239:121920. https://doi.org/10.1016/j.matchemphys.2019.121920

    Article  CAS  Google Scholar 

  13. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chemical reviews, Chem rev 112:2739–2779. https://doi.org/10.1021/cr2001178

    Article  CAS  PubMed  Google Scholar 

  14. Yousefi SR, Ghanbari M, Amiri O, Marzhoseyni Z, Mehdizadeh P, Hajizadeh-Oghaz M, Salavati-Niasari M (2021) Dy2BaCuO5/Ba4DyCu3O9. 09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J Am Ceram Soc 104:2952–2965

    Article  CAS  Google Scholar 

  15. Yousefi SR, Alshamsi HA, Amiri O, Salavati-Niasari M (2021) Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J Mol Liq 337:116405. https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  16. Yousefi SR, Amiri O, Salavati-Niasari M (2019) Control sonochemical parameter to prepare pure Zn0. 35Fe2. 65O4 nanostructures and study their photocatalytic activity. Ultrasonics Sonochem 58:4619. https://doi.org/10.1016/j.ultsonch.2019.104619

  17. Yousefi SR, Masjedi-Arani M, Morassaei MS, Salavati-Niasari M, Moayedi H (2019) Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int J Hydrogen Energ 44:24005–24016. https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  CAS  Google Scholar 

  18. Yousefi SR, Sobhani A, Salavati-Niasari M (2017) A new nanocomposite superionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation. Adv Powder Technol 28:1258–1262. https://doi.org/10.1016/j.apt.2017.02.013

    Article  CAS  Google Scholar 

  19. Mehdizadeh P, Jamdar M, Mahdi MA, Abdulsahib WK, Jasim LS, Yousefi SR, Salavati-Niasari M (2023) Rapid microwave fabrication of new nanocomposites based on Tb-Co-O nanostructures and their application as photocatalysts under UV/Visible light for removal of organic pollutants in water. Arab J Chem 16:104579. https://doi.org/10.1016/j.arabjc.2023.104579

    Article  CAS  Google Scholar 

  20. Mahdi MA, Yousefi SR, Jasim LS, Salavati-Niasari M (2022) Green synthesis of DyBa2Fe3O7. 988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int J Hydrogen Energ 47:14319–14330. https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  21. Yousefi SR, Ghanbari D, Salavati-Niasari M, Hassanpour M (2016) Photo-degradation of organic dyes: simple chemical synthesis of Ni (OH)2 nanoparticles, Ni/Ni (OH)2 and Ni/NiO magnetic nanocomposites. J Mater Sci-Mater El 27:1244–1253. https://doi.org/10.1007/s10854-015-3882-6

    Article  CAS  Google Scholar 

  22. Chen Y, Zheng G, Shi Q, Zhao R, Chen M (2018) Preparation of thiolated calix[8] arene/AuNPs/MWCNTs modified glassy carbon electrode and its electrocatalytic oxidation toward paracetamol. Sensors Actuators B-Chem 277:289–296. https://doi.org/10.1016/j.snb.2018.09.012

    Article  CAS  Google Scholar 

  23. Dong H, Hu X, Zhao J, Li H, Koh K, Gao L, Chen H (2018) Sensitive detection of fractalkine based on AuNPs and metal-organic frameworks composite at para-sulfonatocalix. Sensors Actuators B-Chem 276:150–157. https://doi.org/10.1016/j.snb.2018.08.106

    Article  CAS  Google Scholar 

  24. Gerelbaatar K, Tsogoo A, Dashzeveg R, Tsedev N, Ganbold EO (2018) Reduction of 2, 4-dinitrophenol to 2, 4-diaminophenol using AuNPs and AgNPs as catalyst. Trans Tech Publications Ltd. 271:76–84. https://doi.org/10.4028/www.scientific.net/SSP.271.76

    Article  Google Scholar 

  25. Pourali P, Badiee SH, Manafi S (2017) T Noorani, A. Rezaei, B Yahyaei, Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays, Electron J Biotechn 29:86–93. https://doi.org/10.1016/j.ejbt.2017.07.005

    Article  CAS  Google Scholar 

  26. Fu XC, Zhang J, Tao YY, Wu J, Xie CG, Kong LT (2015) Three-dimensional mono-6-thio-β-cyclodextrin covalently functionalized gold nanoparticle/single-wall carbon nanotube hybrids for highly sensitive and selective electrochemical determination of methyl parathion. Electrochim Acta 153:12–18. https://doi.org/10.1016/j.electacta.2014.11.144

    Article  CAS  Google Scholar 

  27. Narayanan G, Shen J, Matai I, Sachdev A, Boy R, Tonelli AE (2022) Cyclodextrin-based nanostructures. Prog Mater Sci 124:100869. https://doi.org/10.1016/j.pmatsci.2021.100869

    Article  CAS  Google Scholar 

  28. Yang X, Yuan D, Hou J, Sedgwick AC, Xu S, James TD, Wang L (2021) Organic/inorganic supramolecular nano-systems based on host/guest interactions. Coordin Chem Rev 428:213609. https://doi.org/10.1016/j.ccr.2020.213609

    Article  CAS  Google Scholar 

  29. Li J, Wang J, Yuan X, Wang Z, Sun S, Lyu Q, Hu S (2023) Efficient adsorption of BPA and Pb2+ by sulfhydryl-rich β-cyclodextrin polymers. Sep Purif Technol 309:122913. https://doi.org/10.1016/j.seppur.2022.122913

    Article  CAS  Google Scholar 

  30. Wu YH, Bi H, Ning G, Xu ZG, Liu GQ, Wang YH, Zhao YL (2023) Cyclodextrin subject-object recognition-based aptamer sensor for sensitive and selective detection of tetracycline. J Solid State Electr 24:2365–2372. https://doi.org/10.1007/s10008-020-04751-7

    Article  CAS  Google Scholar 

  31. Chen HY, Xin PL, Xu HB, Lv J, Qian RC, Li DW (2023) Self-assembled plasmonic nanojunctions mediated by host-guest interaction for ultrasensitive dual-mode detection of cholesterol. ACS sensors 8:388–396. https://doi.org/10.1021/acssensors.2c02570

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Zhang X, Dai Y (2023) A photo-modulated organometallic nanozyme based on β-cyclodextrin-capped gold nanoparticles for the detection of Zn (II) and cascade catalysis. Chem Eng J 455:140811

    Article  CAS  Google Scholar 

  33. Zhang X, Lin S, Wang Y, Xia F, Dai Y (2021) Cofactor-free organic nanozyme with assembly-induced catalysis and light-regulated activity. Cheml Eng J 426:130855. https://doi.org/10.1016/j.cej.2021.130855

    Article  CAS  Google Scholar 

  34. Zhou Y, Li J, Zhang L, Ge Z, Wang X, Hu X, Xu W (2019) HS-β-cyclodextrin-functionalized Ag@ Fe3O4@Ag nanoparticles as a surface-enhanced Raman spectroscopy substrate for the sensitive detection of butyl benzyl phthalate. Ana bioanal chem 411:5691–5701. https://doi.org/10.1007/s00216-019-01947-3

    Article  CAS  Google Scholar 

  35. Zhu G, Kingsford OJ, Yi Y, Wong KY (2019) Recent advances in electrochemical chiral recognition. J Electrochem Soc 166:H205. https://doi.org/10.1149/2.1121906jes

    Article  CAS  Google Scholar 

  36. Chen H, Yang T, Liu F, Li W (2019) Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sensors Actuators B-Chem 286:401–407. https://doi.org/10.1016/j.snb.2018.10.036

    Article  CAS  Google Scholar 

  37. Lei P, Zhou Y, Zhu R, Wu S, Jiang C, Dong C, Shuang S (2020) Gold nanoparticles decorated bimetallic CuNi-based hollow nanoarchitecture for the enhancement of electrochemical sensing performance of nitrite. Microchim Acta 187:1–9. https://doi.org/10.1007/s00604-020-04545-8

    Article  CAS  Google Scholar 

  38. Feng X, Han G, Cai J, Wang X (2020) Au@ Carbon quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitrite. J Colloid Interf Sci 607:1313–1322

    Article  Google Scholar 

  39. Sudarvizhi A, Pandian K, Oluwafemi OS, Gopinath SC (2018) Amperometry detection of nitrite in food samples using tetrasulfonated copper phthalocyanine modified glassy carbon electrode Sensors Actuators B-Chem 272:151–159

    CAS  Google Scholar 

  40. Lavanya AL, Kumari KGB, Prasad KRS, Brahman PK (2021) Development of pen-type portable electrochemical sensor based on Au-W bimetallic nanoparticles decorated graphene-chitosan nanocomposite film for the detection of nitrite in water, milk and fruit juices. Electroanal 33:1096–1106

    Article  CAS  Google Scholar 

  41. Chang Z, Zhou Y, Hao L, Hao Y, Zhu X, Xu M (2017) Simultaneous determination of dopamine and ascorbic acid using β-cyclodextrin/Au nanoparticles/graphene-modified electrodes. Anal Methods 9:664–671. https://doi.org/10.1039/C6AY03013K

    Article  CAS  Google Scholar 

  42. Mosier-Boss PA (2017) Review of SERS substrates for chemical sensing. Nanomaterials 7(6):142. https://doi.org/10.3390/nano7060142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Balasubramanian P, Annalakshmi M, Chen SM, Sathesh T, Balamurugan TST (2019) Ultrasonic energy-assisted preparation of β-cyclodextrin-carbon nanofiber composite: application for electrochemical sensing of nitrofurantoin. Ultrason Sonochem 52:391–400. https://doi.org/10.1016/j.ultsonch.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Chen P, Wen F, Yuan B, Wang H (2016) Fe3O4 nanospheres on MoS2 nanoflake: electrocatalysis and detection of Cr (VI) and nitrite. J Electroanaly Chem 761:14–20. https://doi.org/10.1016/j.jelechem.2015.12.004

    Article  CAS  Google Scholar 

  45. Zhe TT, Li R, Li F (2021) Surface engineering of carbon selenide nanofilms on carbon cloth: an advanced and ultrasensitive self-supporting binder-free electrode for nitrite sensing. Food Chem 340:127953. https://doi.org/10.1016/j.foodchem.2020.127953

    Article  CAS  PubMed  Google Scholar 

  46. Wei WEI, Shou-Guo WU (2019) Study of electrooxidation behavior of nitrite on gold nanoparticles/graphitizing carbon felt electrode and its analytical application, Chinese. J Anal Chem 47:e19014–e19020. https://doi.org/10.1016/S1872-2040(19)61142-4

    Article  Google Scholar 

  47. Ye C, Chen X, Zhang D, Xu J, Xi H, Wu T, Huang G (2021) Study on the properties and reaction mechanism of polypyrrole@ norfloxacin molecularly imprinted electrochemical sensor based on three-dimensional CoFe-MOFs/AuNPs. Electrochim Acta 379:138174. https://doi.org/10.1016/j.electacta.2021.138174

    Article  CAS  Google Scholar 

  48. Han Y, Zhang R, Dong C, Cheng F, Guo Y (2019) Sensitive electrochemical sensor for nitrite ions based on rose-like AuNPs/MoS2/graphene composite. Biosens Bioelectron 142:111529. https://doi.org/10.1016/j.bios.2019.111529

    Article  CAS  PubMed  Google Scholar 

  49. Wang G, Han R, Feng X, Li Y, Lin J, Luo X (2017) A glassy carbon electrode modified with poly (3, 4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Microchimi Acta 184:1721–1727. https://doi.org/10.1007/s00604-017-2180-9

    Article  CAS  Google Scholar 

  50. Wang H, Chen P, Wen F, Zhu Y, Zhang Y (2018) Flower-like Fe2O3@ MoS2 nanocomposite decorated glassy carbon electrode for the determination of nitrite. Sensors Actuators B-Chem 220:749–754. https://doi.org/10.1016/j.snb.2015.06.016

    Article  CAS  Google Scholar 

  51. Xiao Q, Feng M, Liu Y, Lu S, He Y, Huang S (2018) The graphene/polypyrrole/chitosan-modified glassy carbon electrode for electrochemical nitrite detection. Ionics 24:845–859. https://doi.org/10.1007/s11581-017-2247-y

    Article  CAS  Google Scholar 

  52. Zhang Y, Chen P, Wen F, Huang C, Wang H (2016) Construction of polyaniline/molybdenum sulfide nanocomposite: characterization and its electrocatalytic performance on nitrite. Ionics 22:1095–1102. https://doi.org/10.1007/s11581-015-1634-5

    Article  CAS  Google Scholar 

  53. Jian JM, Fu L, Ji L Lin, Guo X, Ren TL (2018) Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods. Sens Actuators B: Chem 262:125–136. https://doi.org/10.1016/j.snb.2018.01.164

    Article  CAS  Google Scholar 

  54. Pitiphattharabun S, Auewattanapun K, Sato N, Janbooranapinij K, Techapiesancharoenkij R, Panomsuwan G, Jongprateep O (2022) Fe-doped CuO/MWCNT as a sensing material for electrochemical detection of nitrite. Crystals 12:1536. https://doi.org/10.3390/cryst12111536

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Heilongjiang Natural Science Foundation Project (LH2020C063) and the Heilongjiang Province “Hundreds and Thousands Million” Engineering Science and Technology Major Special Projects (SC2021ZX04B0019).

Author information

Authors and Affiliations

Authors

Contributions

Linlin Chen: investigation, methodology, visualization, writing manuscript and review, supervision, funding acquisition. Jiaqi Song: investigation, validation, visualization, writing, and editing. Ling Wang: investigation, Resources. Xi Hao: methodology, investigation. Xintong Li: validation. Haipeng Zhang: validation. Jiashu Wu: validation.

Corresponding author

Correspondence to Linlin Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1448 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Song, J., Wang, L. et al. A simple electrochemical biosensor based on HS-β-cyclodextrin coordination methanobactin/gold nanoparticles for highly sensitive detection of nitrite. J Solid State Electrochem 28, 305–316 (2024). https://doi.org/10.1007/s10008-023-05685-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05685-6

Keywords

Navigation