Skip to main content
Log in

Cyclic voltammetry–based ethylene sensing in solid-state electrochemistry with an electroactive biopolymer/MoO3 composite membrane

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present study is motivated toward the green synthesis of molybdenum oxide (MoO3) nanostructures to prepare polyvinyl alcohol (PVA)-chitosan (CHT)-lithium chloride (LiCl)-MoO3 electroactive biopolymer-nanocomposite membrane and investigate its ethylene detection skill through cyclic voltammetry (CV). Also, a PVA-CHT-LiCl membrane is prepared for the comparative investigation. LiCl acts as supporting electrolyte in those composite systems. To fabricate electrochemical ethylene sensor, the composite is cast onto the electrode surface of a microelectrode chip containing a three-electrode system: counter, working, and reference electrodes. The sensor is exposed to a particular concentration of ethylene. With time variations, electrochemical measurements are performed. The CV plots show variations in the oxidation peak with varying ethylene exposure times, thus can detect ethylene very efficiently. Synthesized MoO3 nanostructures and the composite membranes are characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. X-ray photoluminescence spectroscopy (XPS) determines the oxidation states of Mo in the composite membrane at different conditions: before and after the interaction with ethylene. XRD confirms the existence of MoO3 phase in the composite membrane. The broad peak indicates the amorphous nature of the membrane, favorable for ionic conduction. FE-SEM exhibits layer-type structures of the MoO3 with the thickness of each layer in nano-dimension. PVA-CHT-LiCl-MoO3 membrane shows cleavages on the surface that make it favorable for efficient ethylene detection. The EDS spectra for MoO3 and the composite membranes confirm the elemental compositions. The Raman spectra confirm the chemical compositions of both the MoO3 nanostructures and the membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen X, Wreyford R, Nasiri N (2022) Mater 15:5813. https://doi.org/10.3390/ma15175813

    Article  CAS  Google Scholar 

  2. Esser B, Schnorr JM, Swager TM (2012) Angewandte Chemie Int Ed 51:5752–5756. https://doi.org/10.1002/anie.201201042

    Article  CAS  Google Scholar 

  3. Zhao Q, Duan Z, Yuan Z, Li X, Wang S, Liu B, Zhang Y, Jiang Y, Tai H (2020) Chin Chem Lett 31:2045–2049. https://doi.org/10.1016/j.cclet.2020.04.032

    Article  CAS  Google Scholar 

  4. Bukkitgar, SD, Kumar S, Pratibha, Singh S, Singh V, Reddy KR, Sadhu V, Bagihalli GB, Shetti NP, Reddy Ch.V, Ravindranadh K, Naveen S (2020) Microchem J 159:105522. https://doi.org/10.1016/j.microc.2020.105522

  5. Akhir MAM, Rezan SA, Mohamed K, Arafat MM, Haseeb ASMA, Lee HL (2019) Mater Today: Proc 17:810–819. https://doi.org/10.1016/j.matpr.2019.06.367

    Article  CAS  Google Scholar 

  6. Leangtanom P, Wisitsoraat A, Jaruwongrungsee K, Chanlek N, Phanichphant S, Kruefu V (2020) Mater Chem Phys 254:123540. https://doi.org/10.1016/j.matchemphys.2020.123540

  7. Sholehah A, Karmala K, Huda N, Utari L, Septiani NLW, Yuliarto B (2021) Sens Actuator A Phys 331:112934. https://doi.org/10.1016/j.sna.2021.112934

  8. Lia B, Lia M, Mengc F, Liu J (2019) Sensors & Actuators: B. Chemical 290:396–405. https://doi.org/10.1016/j.snb.2019.04.002

    Article  CAS  Google Scholar 

  9. Mamatha K M, Srinivasa murthy V, Ravikumar C R, Murthy HCA, Kumar VGD, Kumar AN, Jahagirdar AA (2022) Sens Int 3:100153. https://doi.org/10.1016/j.sintl.2021.100153

  10. Yu H, Zhuang Z, Li D, Guo Y, Li Y, Zhong H, Xiong H, Liu Z, Guo Z (2020) J Mater Chem B 8:1040–1104. https://doi.org/10.1039/C9TB02102G

    Article  CAS  PubMed  Google Scholar 

  11. Fang L, Shu Y, Wang A, Zhang T (2007) J Phys Chem C 111:2401–2408. https://doi.org/10.1021/jp065791r

    Article  CAS  Google Scholar 

  12. Gour A, Jain NK (2019) Artificial Cell Nanomed Biotechnol 47:844–851. https://doi.org/10.1080/21691401.2019.1577878

    Article  CAS  Google Scholar 

  13. Sharma K, Mahato N, Nile SH, Leeb ET, Lee YR (2016) Food Funct 7:3354–3369. https://doi.org/10.1039/C6FO00251J

    Article  CAS  PubMed  Google Scholar 

  14. Pareek S, Sagar N A, Sharma S, Kumar V (2018) Onion(Allium cepa L.), fruit and vegetable phytochemicals: chemistry and human health, volume II, second edition. Edited by Yahia EM JohnWiley&SonsLtd 1145–1161. https://doi.org/10.1002/9781119158042.ch58

  15. Theophile N, Jeong HK (2017) Chemical Phys Lett 669:125–129. https://doi.org/10.1016/j.cplett.2016.12.029

    Article  CAS  Google Scholar 

  16. Helberg RML, Dai Z, Ansaloni L, Deng L (2020) Green Energy & Environment 5:59–68. https://doi.org/10.1016/j.gee.2019.10.001

    Article  Google Scholar 

  17. Lu L, Peng F, Jiang Z, Wang J (2006) J Appl Polymer Sci 101:167–173. https://doi.org/10.1002/app.23158

    Article  CAS  Google Scholar 

  18. Yang JM, Su WY, Leu TL, Yang MC (2004) J Membrane Sci 236:39–51. https://doi.org/10.1016/j.memsci.2004.02.005

    Article  CAS  Google Scholar 

  19. Kim JH, Kim JY, Lee YM, Kim KY (1992) J Appl Polymer Sci 45:1711–1717. https://doi.org/10.1002/app.1992.070451004

    Article  CAS  Google Scholar 

  20. Al Naim AF (2021) Crystals 11:822. https://doi.org/10.3390/cryst11070822

    Article  CAS  Google Scholar 

  21. Do NST, Schaetzl DM, Dey B, Seabaugh AC, Fullerton-Shirey SK (2012) J Phys Chem C 116:21216–21223. https://doi.org/10.1021/jp3059454

    Article  CAS  Google Scholar 

  22. Zevenbergen MAG, Wouters D, Dam VAT, Brongersma SH, Crego-Calama M (2011) Anal Chem 83:6300–6307. https://doi.org/10.1021/ac2009756

    Article  CAS  PubMed  Google Scholar 

  23. Doondani P, Jugade R, Gomase V, Shekhawat A, Bambal A. Pandey S (2022) Water 14:3411. https://doi.org/10.3390/w14213411

  24. Koosha M, Aalipour H, Shirazi MJS, Jebali A, Chi H, Hamedi S, Wang N, Li T, Moravvej H (2021) J Funct Biomater 12:61. https://doi.org/10.3390/jfb12040061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Farazin A, Mohammadimehr M, Ghasemi AH, Naeimi H (2021) RSC Adv 11:32775–32791. https://doi.org/10.1039/D1RA05153A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anilkumar KM, Jinisha B, Manoj M, Jayalekshmi S (2017) European Polymer J 89:249–262. https://doi.org/10.1016/j.eurpolymj.2017.02.004

    Article  CAS  Google Scholar 

  27. Xiao Q, Wang X, Li W, Li Z, Zhang T, Zhang H (2009) J Membrane Sci 334:117–122. https://doi.org/10.1016/j.memsci.2009.02.018

    Article  CAS  Google Scholar 

  28. Dubbe A (2003) Sens Actuators, B Chem 88:138–148. https://doi.org/10.1016/S0925-4005(02)00317-9

    Article  CAS  Google Scholar 

  29. Tierney MJ, Kim HOL (1993) Anal Chem 65:3435–3440. https://doi.org/10.1021/ac00071a017

    Article  CAS  Google Scholar 

  30. Wan W, Li Y, Ren X, Zhao Y, Gao F, Zhao H (2018) Nanomaterials 8:112. https://doi.org/10.3390/nano8020112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roy D, Yadav AK, Singh KB, Pandey G (2023) Jordan. J Phys 16:2

    Google Scholar 

  32. Cornelius K, Cornelius S. Jr. H (1985) Manual of mineralogy (after James D. Dana) (20th ed.) John Wiley & Sons, New York ISBN 0–471–80580–7

  33. Liu X, Ma T, Pinna N, Zhang J (2017) Adv Funct Mater 27:1702168. https://doi.org/10.1002/adfm.201702168

    Article  CAS  Google Scholar 

  34. Wu F, Kim H, Magasinski A, Lee JT, Lin HT, Yushin G (2014) Adv Energ Mater 4:1400196. https://doi.org/10.1002/aenm.201400196

    Article  CAS  Google Scholar 

  35. Fan Z, Zhang X, Zhou M, Yang Y, Wen G (2023) J Mater Sci: Mater Electronics 34:275. https://doi.org/10.1007/s10854-022-09696-3

    Article  CAS  Google Scholar 

  36. Dieterle M, Weinberg G, Mestl G (2002) Physical Chem Chemical Phys 4:812–821. https://doi.org/10.1039/b107012f

    Article  CAS  Google Scholar 

  37. Merwin A, Phillips WC, Williamson MA, Willit JL, Motsegood PN, Chidambaram D (2016) Sci Rep 6:25435. https://doi.org/10.1038/srep25435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rathod SG, Bhajantri RF, Ravindrachary V, Pujari PK, Sheela T (2014) J Adv Dielectrics 4:1450033. https://doi.org/10.1142/S2010135X14500337

    Article  CAS  Google Scholar 

  39. Yang CC, Chiu SJ, Lee KT, Chien WC, Lina CT, Huang CA (2008) J Power Source 184:44–51. https://doi.org/10.1016/j.jpowsour.2008.06.011

    Article  CAS  Google Scholar 

  40. Nirmala R, Il BW, Navamathavan R, El-Newehy MH, Kim HY (2011) Macromolecul Res 19:345–350. https://doi.org/10.1007/s13233-011-0402-2

    Article  CAS  Google Scholar 

  41. Baraker BM, Lobo B (2017) Canadian J Phys 95:1–23. https://doi.org/10.1139/cjp-2016-0848

    Article  CAS  Google Scholar 

  42. Anderson A, Sun S (1970) Chemical Phys Let 6:611–616. https://doi.org/10.1016/0009-2614(70)85239-3

    Article  CAS  Google Scholar 

  43. Aydin YA (2021) J Appl Polymer Sci 138:50339. https://doi.org/10.1002/app.50339

    Article  CAS  Google Scholar 

  44. Liang J, Sheng H, Wang Q, Yuan J, Zhang X, Su Q, Xie E, Lan W, Zhang CJ (2021) Nanoscale Adv 3:3502. https://doi.org/10.1039/d1na00121c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roy D, Pandey K, Yadav AK (2022) J Physical Sci 33:19–44. https://doi.org/10.21315/jps2022.33.2.2

  46. Singera IL, Mogne TL, Donnet C, Martin JM, Vac J (1996) J Vacuum Sci & Technol A 14:38–45. https://doi.org/10.1116/1.579877

    Article  Google Scholar 

  47. Cimino A, De Angelis BA (1975) J Catal 36:11–12. https://doi.org/10.1016/0021-9517(75)90004-4

    Article  CAS  Google Scholar 

  48. Ozkar S, Ozin GA, Prokopowicz RA (1992) Chem Mater 4:1380–1388. https://doi.org/10.1021/cm00024a046

    Article  CAS  Google Scholar 

  49. Benoist L, Gonbeau D, Pfister-Guillouzo G, Schmidt E, Meunier G, Levasseur A (1994) Surf Inter Anal 22:206–210 https://doi.org/10.1002/sia.740220146 (CAS Registry No: 18868–43–4, NIST Standard Reference Database 20, Version 4.1, 2012, https://doi.org/10.18434/T4T88K)

  50. Benoist L, Gonbeau D, Pfister-Guillouzo G, Schmidt E, Meunier G, Levasseur A (1995) Solid State Ion 76:81–89. https://doi.org/10.1016/0167-2738(94)00226-I

    Article  CAS  Google Scholar 

  51. Gruenert W, Stakheev AY, Feldhaus R, Anders K, Shpiro ES, Minachev KM (1991) The J Phys Chem 95:1323–1328 https://doi.org/10.1021/j100156a054 (CAS Registry No: 1313–27–5, NIST Standard Reference Database 20, Version 4.1, 2012, https://doi.org/10.18434/T4T88K)

  52. Anwar M, Hogarth CA, Bulpett R (1990) J Mater Sci 25:1784–1788. https://doi.org/10.1007/BF01045385

    Article  CAS  Google Scholar 

  53. Al-Shihry SS, Halawy SA (1996) J Molecul Catal A: Chem 113:479–487. https://doi.org/10.1016/S1381-1169(96)00155-0 (CAS Registry No: 1313–27–5, NIST Standard Reference Database 20, Version 4.1, 2012. https://doi.org/10.18434/T4T88K

Download references

Acknowledgements

The authors are very thankful to the TIET-TAU Center of Excellence for Food Security (T2CEFS), Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India, for providing financial support. The author Diptarka Roy is very thankful to T2CEFS, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India, for providing the Post-Doctoral fellowship under the project “Biosensor platforms and affordable processing technologies for mitigation of post-harvest losses” to accomplish this research work. The authors are also thankful to Dr. Sefi Vernick, Department of Sensing, Information and Mechanization Engineering, Institute of Agricultural Engineering, ARO Volcani Institute, Rishon LeZion, Israel, for providing microelectrode chip facility to perform the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moushumi Ghosh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, D., Ghosh, M. Cyclic voltammetry–based ethylene sensing in solid-state electrochemistry with an electroactive biopolymer/MoO3 composite membrane. J Solid State Electrochem 28, 283–295 (2024). https://doi.org/10.1007/s10008-023-05669-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05669-6

Keywords

Navigation