Skip to main content
Log in

A collection of the best practice examples of electroanalytical applications in education: from polarography to sensors

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electroanalytical methods have undergone development and change from the first polarographic applications to the sensor strategies in today’s sense. However, the most important goals are always to detect a wide variety of analytes in complex environments with high selectivity, sensitivity, user-friendliness, and low cost. In these respects, electrochemistry has always been a prominent method. This review explains the evaluation of electrochemical applications from the past to the future. An overview of the electroanalytical techniques, such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and amperometry, is given with their most recent applications in the determination of various analytes. Today, it is aimed to develop next-generation strategies using electroanalytical techniques. Analyses with easily applicable, fast-response, portable sensor devices have been taken to a different level. Electrochemistry-based glucose sensors, biosensors, nanosensors, and wearable sensors developed for this purpose and their latest applications are discussed in detail. The point electroanalytical applications have reached today is the use and commercialization of highly advantageous sensor devices in biomedical, clinical, and environmental applications. This review aims to shed light on the developments from the past applications to the present, give an idea about current practices, and offer a comprehensive perspective to researchers who want to work in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Baig N, Sajid M, Saleh TA (2019) Recent trends in nanomaterial-modified electrodes for electroanalytical applications, TrAC -. Trends Anal Chem 111:47–61. https://doi.org/10.1016/j.trac.2018.11.044

    Article  CAS  Google Scholar 

  2. Mokwebo KV, Douman SF, Uhuo OV, Januarie KC, Oranzie M, Iwuoha EI (2022) Electroanalytical sensors for antiretroviral drugs determination in pharmaceutical and biological samples: A review. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2022.116621

    Article  Google Scholar 

  3. Heyrovský J, Kůta J (1965) Principles of polarography. In: Princ. Polarogr, pp. 17–34. https://doi.org/10.1016/b978-0-12-346650-1.50005-9

  4. Scholz F, Stojek Z, Inzelt G, Marken F, Neudeck A, Bond AM, Lovric M, Retter U, Lohse H, Compton RG, Fiedler DA, Kahlert H, Komorsky-Lovric S (2010) Electroanalytical Methods: Guide to experiments and applications, 2nd ed., Springer. https://doi.org/10.1007/978-3-642-02915-8

  5. Díaz-Cruz JM, Serrano N, Pérez-Ràfols C, Ariño C, Esteban M (2020) Electroanalysis from the past to the twenty-first century: challenges and perspectives. J Solid State Electrochem 24:2653–2661. https://doi.org/10.1007/s10008-020-04733-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Girault HH (2004) Analytical and physical electrochemistry. EPFL Press. https://doi.org/10.1016/j.trac.2005.07.002

    Article  Google Scholar 

  7. Ozkan SA, Kauffmann J-M, Zuman P (2015) Electroanalysis in biomedical and pharmaceutical sciences. https://doi.org/10.1007/978-3-662-47138-8

  8. Scholz F (2015) Voltammetric techniques of analysis: the essentials. ChemTexts 1:17. https://doi.org/10.1007/s40828-015-0016-y

    Article  Google Scholar 

  9. Wang J (2006) Analytical Electrochemistry. John Wiley & Sons Inc, Third Edit

    Book  Google Scholar 

  10. Alghamdi AF, Messali M (2018) Green synthesis of new ionic liquid and its electrochemical determination at some detergents and cosmetics samples using differential pulse polarography. J Mol Liq 266:112–117. https://doi.org/10.1016/j.molliq.2018.06.070

    Article  CAS  Google Scholar 

  11. Mazurek A, Włodarczyk-Stasiak M, Pankiewicz U, Kowalski R, Jamroz J (2020) Development and validation of a differential pulse polarography method for determination of total vitamin C and dehydroascorbic acid contents in foods. Lwt. https://doi.org/10.1016/j.lwt.2019.108828

    Article  Google Scholar 

  12. Kaya SI, Cetinkaya A, Ozkan SA (2020) Carbon nanomaterial-based drug sensing platforms using state-of-the-art electroanalytical techniques. Curr Anal Chem 16:1–23. https://doi.org/10.2174/1573411016999200802024629

    Article  CAS  Google Scholar 

  13. Laviron E (1974) Surface linear potential sweep voltammetry. Equation of the peaks for a reversible reaction when interactions between the adsorbed molecules are taken into account. J Electroanal Chem 52:395–402. https://doi.org/10.1016/S0022-0728(74)80449-3

    Article  CAS  Google Scholar 

  14. Aristov N, Habekost A (2015) Cyclic voltammetry - A versatile electrochemical method investigating electron transfer processes. World J Chem Educ 3:115–119. https://doi.org/10.12691/wjce-3-5-2

  15. Budak F, Cetinkaya A, Kaya SI, Bellur E, Ozkan SA (2023) Sensitive determination and electrochemical evaluation of anticancer drug tofacitinib in pharmaceutical and biological samples using glassy carbon and boron-doped diamond electrodes. Diam Relat Mater 133:109751. https://doi.org/10.1016/j.diamond.2023.109751

    Article  ADS  CAS  Google Scholar 

  16. Cetinkaya A, Topal BD, Atici EB, Ozkan SA (2021) Simple and highly sensitive assay of axitinib in dosage form and biological samples and its electrochemical behavior on the boron-doped diamond and glassy carbon electrodes. Electrochim Acta 386:138443. https://doi.org/10.1016/j.electacta.2021.138443

    Article  CAS  Google Scholar 

  17. El Henawee M, Saleh H, Attia AK, Hussien EM, Derar AR (2021) Carbon nanotubes bulk modified printed electrochemical sensor for green determination of vortioxetine hydrobromide by linear sweep voltammetry. Meas J Int Meas Confed 177:109239. https://doi.org/10.1016/j.measurement.2021.109239

    Article  Google Scholar 

  18. Brett CMA (1993) Electrochemistry. Methods and Applications, Oxford University Press, Principles

    Google Scholar 

  19. Kikuchi M, Sowa K, Takeuchi M, Nakagawa K, Matsunaga M, Ando A, Kano K, Ogawa J, Sakuradani E (2022) Quantification of leuco-indigo in indigo-dye-fermenting suspension by normal pulse voltammetry. J Biosci Bioeng 134:84–88. https://doi.org/10.1016/j.jbiosc.2022.04.009

    Article  CAS  PubMed  Google Scholar 

  20. Schilder WH, Tanumihardja E, Leferink AM, van den Berg A, Olthuis W (2020) Determining the antioxidant properties of various beverages using staircase voltammetry. Heliyon 6:e04210. https://doi.org/10.1016/j.heliyon.2020.e04210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. González-Hernández J, Alvarado-Gámez AL, Arroyo-Mora LE, Barquero-Quirós M (2021) Electrochemical determination of novel psychoactive substances by differential pulse voltammetry using a microcell for boron-doped diamond electrode and screen-printed electrodes based on carbon and platinum. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2021.114994

    Article  Google Scholar 

  22. Kassa A, Bitew Z, Abebe A (2023) A non-toxic poly(resorcinol) modified glassy carbon electrode for highly selective square wave voltammetry determination of aspirin in tablet formulations and human urine samples. Sens Bio-Sensing Res 39:100554. https://doi.org/10.1016/j.sbsr.2023.100554

    Article  Google Scholar 

  23. Araújo DS, Arantes LC, Faria LV, Souza KAO, Pimentel DM, Barbosa SL, Richter EM, Muñoz RAA, dos Santos WTP (2023) Electrochemistry of 5F-MDMB-PICA synthetic cannabinoid using a boron-doped diamond electrode with short anodic-cathodic pretreatment: A simple screening method for application in forensic analysis. Electrochim Acta. https://doi.org/10.1016/j.electacta.2023.142356

    Article  Google Scholar 

  24. Bilge S, Karadurmus L, Atici EB, Sınağ A, Ozkan SA (2022) A novel electrochemical sensor based on magnetic Co3O4 nanoparticles/carbon recycled from waste sponges for sensitive determination of anticancer drug ruxolitinib. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2022.132127

    Article  Google Scholar 

  25. Doulache M, Kaya SI, Cetinkaya A, Bakirhan NK, Trari M, Ozkan SA (2021) Detailed electrochemical behavior and thermodynamic parameters of anticancer drug regorafenib and its sensitive electroanalytical assay in biological and pharmaceutical samples. Microchem J 170:106717. https://doi.org/10.1016/j.microc.2021.106717

    Article  CAS  Google Scholar 

  26. Ye MH, Chen JR, Sun HZ, Xiao HB, Yang T, Wang WL, Xie QJ (2022) An Au(111)-dominant polycrystalline gold/gold nanoparticles/1,8-naphthyridine/glassy carbon electrode for anodic stripping voltammetry determination of As(III). Electrochim Acta 428:140949. https://doi.org/10.1016/j.electacta.2022.140949

    Article  CAS  Google Scholar 

  27. Ustabasi GS, Pérez-Ràfols C, Serrano N, Díaz-Cruz JM (2022) Simultaneous determination of iron and copper using screen-printed carbon electrodes by adsorptive stripping voltammetry with o-phenanthroline. Microchem J. https://doi.org/10.1016/j.microc.2022.107597

    Article  Google Scholar 

  28. Komorsky-Lovrić Š, Novak I (2013) Abrasive stripping voltammetry of myricetin and dihydromyricetin. Electrochim Acta 98:153–156. https://doi.org/10.1016/j.electacta.2013.03.062

    Article  CAS  Google Scholar 

  29. Ramos DLO, Ribeiro MMAC, Munoz RAA, Richter EM (2022) Portable amperometric method for selective determination of caffeine in samples with the presence of interfering electroactive chemical species. J Electroanal Chem 906:116006. https://doi.org/10.1016/j.jelechem.2021.116006

    Article  CAS  Google Scholar 

  30. Ganesh PS, Kim SY (2022) A comparison of conventional and advanced electroanalytical methods to detect SARS-CoV-2 virus: A concise review. Chemosphere 307:135645. https://doi.org/10.1016/j.chemosphere.2022.135645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Losey MW, Kelly JJ (2007). Electrodeposition. https://doi.org/10.1016/B978-044452190-3.00010-0

    Article  Google Scholar 

  32. Scala-Benuzzi ML, Soler-Illia GJAA, Raba J, Battaglini F, Schneider RJ, Pereira SV, Messina GA (2021) Immunosensor based on porous gold and reduced graphene platform for the determination of EE2 by electrochemical impedance spectroscopy. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2021.115604

    Article  Google Scholar 

  33. Spano N, Guccini V, Ciulu M, Floris I, Nurchi VM, Panzanelli A, Pilo MI, Sanna G (2018) Free fluoride determination in honey by ion-specific electrode potentiometry: Method assessment, validation and application to real unifloral samples. Arab J Chem 11:492–500. https://doi.org/10.1016/j.arabjc.2014.12.010

    Article  CAS  Google Scholar 

  34. Konieczka P (2007) The role of and the place of method validation in the quality assurance and quality control (QA/QC) system. Crit Rev Anal Chem 37:173–190. https://doi.org/10.1080/10408340701244649

    Article  CAS  Google Scholar 

  35. Gumustas M, Ozkan SA (2011) The Role of and the Place of Method Validation in Drug Analysis Using Electroanalytical Techniques. Open Anal Chem J 5:1–21. https://doi.org/10.2174/187406500115010001

    Article  CAS  Google Scholar 

  36. Validation of Analytical Procedures: Text and Methodology International Conference on Harmonisation (ICH) Guideline (1995)

  37. Ozkan SA, Uslu B (2016) From mercury to nanosensors: Past, present and the future perspective of electrochemistry in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 130:126–140. https://doi.org/10.1016/j.jpba.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  38. Kurbanoglu S, Ozkan SA (2018) Electrochemical carbon based nanosensors : a promising tool in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 147:439–457. https://doi.org/10.1016/j.jpba.2017.06.062

    Article  CAS  PubMed  Google Scholar 

  39. Ferrari AG, Rowley-Neale SJ, Banks CE (2021) Screen-printed electrodes : transitioning the laboratory in-to-the field. Talanta Open. https://doi.org/10.1016/j.talo.2021.100032

    Article  Google Scholar 

  40. Liang G, He Z, Zhen J, Tian H, Ai L (2022) Development of the screen-printed electrodes : a mini review on the application for pesticide detection. Environ Technol Innov 28:102922. https://doi.org/10.1016/j.eti.2022.102922

    Article  CAS  Google Scholar 

  41. Xu L, Zhou Z, Fan M, Fang X (2023) Advances in wearable flexible electrochemical sensors for sweat monitoring: A mini-review. Int J Electrochem Sci 18:13–19. https://doi.org/10.1016/j.ijoes.2023.01.009

    Article  CAS  Google Scholar 

  42. Liu X, Huang S, Ma L, Ye H, Lin J, Cai X, Shang Q, Zheng C, Xu R, Zhang D (2022) Recent advances in wearable medical diagnostic sensors and new therapeutic dosage forms for fever in children. J Pharm Biomed Anal 220:115006. https://doi.org/10.1016/j.jpba.2022.115006

    Article  CAS  PubMed  Google Scholar 

  43. Dai N, Lei IM, Li Z, Li Y, Fang P, Zhong J (2023) Recent advances in wearable electromechanical sensors—Moving towards machine learning-assisted wearable sensing systems. Nano Energy. https://doi.org/10.1016/j.nanoen.2022.108041

    Article  Google Scholar 

  44. Promphet N, Ummartyotin S, Ngeontae W, Puthongkham P, Rodthongkum N (2021) Non-invasive wearable chemical sensors in real-life applications. Anal Chim Acta 1179:338643. https://doi.org/10.1016/j.aca.2021.338643

    Article  CAS  PubMed  Google Scholar 

  45. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann New York Acad Sci

  46. Frey JW, Corn M (1967) Diesel Exhaust Particulates. Nature 216:615–616

  47. Nilsson H, Åkerlund AC, Mosbach K (1973) Determination of glucose, urea and penicillin using enzyme-pH-electrodes. BBA - Gen Subj 320:529–534. https://doi.org/10.1016/0304-4165(73)90333-4

    Article  CAS  Google Scholar 

  48. Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46–57. https://doi.org/10.1016/j.aca.2005.05.080

    Article  CAS  PubMed  Google Scholar 

  49. Cass AEG, Davis G, Francis GD, Allen H, Hill O, Aston WJ, Higgins IJ, Plotkin EV, Scott LDL, Turner APF (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56:667–671. https://doi.org/10.1021/ac00268a018

    Article  CAS  PubMed  Google Scholar 

  50. Degani Y, Heller A, Cowan JA, Gray HB, Sykes AG, Isied SS (1990) Proceedings of the Robert A. Welch Foundation Conferences on Chemical Research; The Welch Foundation: Houston. Prog Inorg Chem 23:443

    Google Scholar 

  51. Hinshelwood CN (1945) Physical chemistry. Nature 156:283–284. https://doi.org/10.1038/156283a0

    Article  ADS  Google Scholar 

  52. Zayats M, Katz E, Willner I (2002) Electrical contacting of glucose oxidase by surface-reconstitution of the apo-protein on a relay-boronic acid-FAD cofactor monolayer. J Am Chem Soc 124:2120–2121. https://doi.org/10.1021/ja025503e

    Article  CAS  PubMed  Google Scholar 

  53. Willner I, Heleg-Shabtai V, Blonder R, Katz E, Tao G, Bückmann AF, Heller A (1996) Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. J Am Chem Soc 118:10321–10322. https://doi.org/10.1021/ja9608611

    Article  CAS  Google Scholar 

  54. Zou Y, Chu Z, Guo J, Liu S, Ma X, Guo J (2023) Minimally invasive electrochemical continuous glucose monitoring sensors: Recent progress and perspective. Biosens Bioelectron 225:115103. https://doi.org/10.1016/j.bios.2023.115103

    Article  CAS  PubMed  Google Scholar 

  55. American Diabetes Association (2019) 6. Glycemic targets: Standards of medical care in diabetes—2019. Diabetes Care 42(Supplement_1):S61–S70. https://doi.org/10.2337/dc19-S006

  56. Cheng Y, Gong X, Yang J, Zheng G, Zheng Y, Li Y, Xu Y, Nie G, Xie X, Chen M, Yi C, Jiang L (2022) A touch-actuated glucose sensor fully integrated with microneedle array and reverse iontophoresis for diabetes monitoring. Biosens Bioelectron 203:114026. https://doi.org/10.1016/j.bios.2022.114026

    Article  CAS  PubMed  Google Scholar 

  57. Liu Y, Liu S, Zhao Z, Song X, Qu H, Liu H (2021) Phenylacetylglutamine is associated with the degree of coronary atherosclerotic severity assessed by coronary computed tomographic angiography in patients with suspected coronary artery disease. Atherosclerosis 333:75–82. https://doi.org/10.1016/j.atherosclerosis.2021.08.029

    Article  CAS  PubMed  Google Scholar 

  58. Ribet F, Stemme G, Roxhed N (2018) Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomed Microdevices. https://doi.org/10.1007/s10544-018-0349-6

    Article  PubMed  PubMed Central  Google Scholar 

  59. Parrilla M, Detamornrat U, Domínguez-Robles J, Donnelly RF, De Wael K (2022) Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose. Talanta 249:123695. https://doi.org/10.1016/j.talanta.2022.123695

    Article  CAS  PubMed  Google Scholar 

  60. Kim KB, Lee WC, Cho CH, Park DS, Cho SJ, Shim YB (2019) Continuous glucose monitoring using a microneedle array sensor coupled with a wireless signal transmitter. Sensors Actuators B Chem 281:14–21. https://doi.org/10.1016/j.snb.2018.10.081

    Article  CAS  Google Scholar 

  61. Kim KB, Choi H, Jung HJ, Oh YJ, Cho CH, Min JH, Yoon S, Kim J, Cho SJ, Cha HJ (2019) Mussel-inspired enzyme immobilization and dual real-time compensation algorithms for durable and accurate continuous glucose monitoring. Biosens Bioelectron 143:111622. https://doi.org/10.1016/j.bios.2019.111622

    Article  CAS  PubMed  Google Scholar 

  62. Cai Y, Liang B, Chen S, Zhu Q, Tu T, Wu K, Cao Q, Fang L, Liang X, Ye X (2020) One-step modification of nano-polyaniline/glucose oxidase on double-side printed flexible electrode for continuous glucose monitoring: Characterization, cytotoxicity evaluation and in vivo experiment. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2020.112408

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bollella P, Sharma S, Cass AEG, Antiochia R (2019) Minimally-invasive microneedle-based biosensor array for simultaneous lactate and glucose monitoring in artificial interstitial fluid. Electroanalysis 31:374–382. https://doi.org/10.1002/elan.201800630

    Article  CAS  Google Scholar 

  64. Jin X, Li G, Xu T, Su L, Yan D, Zhang X (2022) Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens Bioelectron 196:113760. https://doi.org/10.1016/j.bios.2021.113760

    Article  CAS  PubMed  Google Scholar 

  65. Zhang BL, Yang Y, Zhao ZQ, Guo XD (2020) A gold nanoparticles deposited polymer microneedle enzymatic biosensor for glucose sensing. Electrochim Acta. https://doi.org/10.1016/j.electacta.2020.136917

    Article  Google Scholar 

  66. Gao J, Huang W, Chen Z, Yi C, Jiang L (2019) Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sensors Actuators B Chem 287:102–110. https://doi.org/10.1016/j.snb.2019.02.020

    Article  CAS  Google Scholar 

  67. Zheng H, Liu M, Yan Z, Chen J (2020) Highly selective and stable glucose biosensor based on incorporation of platinum nanoparticles into polyaniline-montmorillonite hybrid composites. Microchem J 152:104266. https://doi.org/10.1016/j.microc.2019.104266

    Article  CAS  Google Scholar 

  68. Chinnadayyala SR, Park I, Cho S (2018) Nonenzymatic determination of glucose at near neutral pH values based on the use of nafion and platinum black coated microneedle electrode array. Microchim Acta. https://doi.org/10.1007/s00604-018-2770-1

    Article  Google Scholar 

  69. Lin FY, Lee PY, Chu TF, Peng CI, Wang GJ (2021) Neutral nonenzymatic glucose biosensors based on electrochemically deposited Pt/Au nanoalloy electrodes. Int J Nanomedicine 16:5551–5563. https://doi.org/10.2147/IJN.S321480

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sreekumar A, Navaneeth P, Suneesh PV, Nair BG, Babu TGS (2020) A graphite pencil electrode with electrodeposited Pt-CuO for nonenzymatic amperometric sensing of glucose over a wide linear response range. Microchim Acta 187:3–10. https://doi.org/10.1007/s00604-019-4077-2

    Article  CAS  Google Scholar 

  71. Shen M, Li W, Chen L, Chen Y, Ren S, Han D (2021) NiCo-LDH nanoflake arrays-supported Au nanoparticles on copper foam as a highly sensitive electrochemical non-enzymatic glucose sensor. Anal Chim Acta 1177:338787. https://doi.org/10.1016/j.aca.2021.338787

    Article  CAS  PubMed  Google Scholar 

  72. Hellingwerf KJ, Grootjans LJ (1986) Ion-selective electrodes in their nonlinear, suboptimal response range. Math Model 7:1579–1586. https://doi.org/10.1016/0270-0255(86)90090-4

    Article  Google Scholar 

  73. Fang A, Ng HT, Li SFY (2003) A high-performance glucose biosensor based on monomolecular layer of glucose oxidase covalently immobilised on indium-tin oxide surface. Biosens Bioelectron 19:43–49. https://doi.org/10.1016/S0956-5663(03)00133-7

    Article  CAS  PubMed  Google Scholar 

  74. Wongkaew N, Simsek M, Griesche C, Baeumner AJ (2019) Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective. Chem Rev 119:120–194. https://doi.org/10.1021/acs.chemrev.8b00172

    Article  CAS  PubMed  Google Scholar 

  75. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors - sensor principles and architectures. Sensors 8:1400–1458. https://doi.org/10.3390/s8031400

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li J, Chang H, Zhang N, He Y, Zhang D, Liu B, Fang Y (2023) Recent advances in enzyme inhibition based-electrochemical biosensors for pharmaceutical and environmental analysis. Talanta 253:124092. https://doi.org/10.1016/j.talanta.2022.124092

    Article  CAS  Google Scholar 

  77. Li H, Yang G, Ma F, Li T, Yang H, Rombout JHWM, An L (2017) Molecular characterization of a fish-specific toll-like receptor 22 (TLR22) gene from common carp (Cyprinus carpio L.): Evolutionary relationship and induced expression upon immune stimulants. Fish Shellfish Immunol 63:74–86. https://doi.org/10.1016/j.fsi.2017.02.009

    Article  CAS  PubMed  Google Scholar 

  78. Monošík R, Streďanský M, Šturdík E (2012) Biosensors - classification, characterization and new trends. Acta Chim Slovaca 5:109–120. https://doi.org/10.2478/v10188-012-0017-z

    Article  Google Scholar 

  79. Monteiro T, Almeida MG (2019) Electrochemical enzyme biosensors revisited: old solutions for new problems. Crit Rev Anal Chem 49:44–66. https://doi.org/10.1080/10408347.2018.1461552

    Article  CAS  PubMed  Google Scholar 

  80. D’Orazio P (2003) Biosensors in clinical chemistry. Clin Chim Acta 334:41–69. https://doi.org/10.1016/S0009-8981(03)00241-9

    Article  CAS  PubMed  Google Scholar 

  81. Wilson MS (2005) Electrochemical immunosensors for the simultaneous detection of two tumor markers. Anal Chem 77:1496–1502. https://doi.org/10.1021/ac0485278

    Article  CAS  PubMed  Google Scholar 

  82. Soomro RA, Jawaid S, Zhu Q, Abbas Z, Xu B (2020) A mini-review on MXenes as versatile substrate for advanced sensors. Chinese Chem Lett 31:922–930. https://doi.org/10.1016/j.cclet.2019.12.005

    Article  CAS  Google Scholar 

  83. Wu L, Lu X, Dhanjai, Wu ZS, Dong Y, Wang X, Zheng S, Chen J (2018) 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens Bioelectron 107:69–75. https://doi.org/10.1016/j.bios.2018.02.021

    Article  CAS  PubMed  Google Scholar 

  84. Eklund P, Rosen J, Persson POÅ (2017) Layered ternary Mn+1AXn phases and their 2D derivative MXene: An overview from a thin-film perspective. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/aa57bc

    Article  Google Scholar 

  85. Kim ER, Joe C, Mitchell RJ, Gu MB (2023) Biosensors for healthcare: current and future perspectives. Trends Biotechnol 41:374–395. https://doi.org/10.1016/j.tibtech.2022.12.005

    Article  CAS  PubMed  Google Scholar 

  86. Chen L, Liu X, Chen C (2017) Impedimetric biosensor modified with hydrophilic material of tannic acid/polyethylene glycol and dopamine-assisted deposition for detection of breast cancer-related BRCA1 gene. J Electroanal Chem 791:204–210. https://doi.org/10.1016/j.jelechem.2017.03.001

    Article  CAS  Google Scholar 

  87. Yang T, Gao Y, Liu Z, Xu J, Lu L, Yu Y (2017) Three-dimensional gold nanoparticles/prussian blue-poly(3,4-ethylenedioxythiophene) nanocomposite as novel redox matrix for label-free electrochemical immunoassay of carcinoembryonic antigen. Sensors Actuators B Chem 239:76–84. https://doi.org/10.1016/j.snb.2016.08.001

    Article  CAS  Google Scholar 

  88. Chung S, Akhtar MH, Benboudiaf A, Park DS, Shim YB (2020) A Sensor for Serotonin and Dopamine Detection in Cancer Cells Line Based on the Conducting Polymer−Pd Complex Composite. Electroanalysis 32:520–527. https://doi.org/10.1002/elan.201900568

    Article  CAS  Google Scholar 

  89. Yazdanparast S, Benvidi A, Banaei M, Nikukar H, Tezerjani MD, Azimzadeh M (2018) Dual-aptamer based electrochemical sandwich biosensor for MCF-7 human breast cancer cells using silver nanoparticle labels and a poly(glutamic acid)/MWNT nanocomposite. Microchim Acta 185:1–10. https://doi.org/10.1007/s00604-018-2918-z

    Article  CAS  Google Scholar 

  90. Wang W, Li S, Zhang G, He J, Ma Z (2017) Electrochemical immunoassay for breast cancer markers CA153 determination based on carbon nanotubes modified electrode. Int J Electrochem Sci 12:10791–10799. https://doi.org/10.20964/2017.11.41

  91. Hasanzadeh M, Baghban HN, Shadjou N, Mokhtarzadeh A (2018) Ultrasensitive electrochemical immunosensing of tumor suppressor protein p53 in unprocessed human plasma and cell lysates using a novel nanocomposite based on poly-cysteine/graphene quantum dots/gold nanoparticle. Int J Biol Macromol 107:1348–1363. https://doi.org/10.1016/j.ijbiomac.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  92. Zhang D, Li W, Ma Z (2018) Improved sandwich-format electrochemical immunosensor based on “smart” SiO2@polydopamine nanocarrier. Biosens Bioelectron 109:171–176. https://doi.org/10.1016/j.bios.2018.03.027

    Article  CAS  PubMed  Google Scholar 

  93. Li C, Liu C, Liu R, Wang Y, Li A, Tian S, Cheng W, Ding S, Li W, Zhao M, Xia Q (2023) A novel CRISPR/Cas14a-based electrochemical biosensor for ultrasensitive detection of Burkholderia pseudomallei with PtPd@PCN-224 nanoenzymes for signal amplification. Biosens Bioelectron 225:115098. https://doi.org/10.1016/j.bios.2023.115098

    Article  CAS  PubMed  Google Scholar 

  94. Huang L, Yuan N, Guo W, Zhang Y, Zhang W (2022) An electrochemical biosensor for the highly sensitive detection of Staphylococcus aureus based on SRCA-CRISPR/Cas12a. Talanta 252:123821. https://doi.org/10.1016/j.talanta.2022.123821

    Article  CAS  PubMed  Google Scholar 

  95. Chen H, Li ZY, Chen J, Yu H, Zhou W, Shen F, Chen Q, Wu L (2022) CRISPR/Cas12a-based electrochemical biosensor for highly sensitive detection of cTnI. Bioelectrochemistry 146:108167. https://doi.org/10.1016/j.bioelechem.2022.108167

    Article  CAS  PubMed  Google Scholar 

  96. Chen Z, Ma L, Bu S, Zhang W, Chen J, Li Z, Hao Z, Wan J (2021) CRISPR/Cas12a and immuno-RCA based electrochemical biosensor for detecting pathogenic bacteria. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2021.115755

    Article  Google Scholar 

  97. Sheng Y, Zhang T, Zhang S, Johnston M, Zheng X, Shan Y, Liu T, Huang Z, Qian F, Xie Z, Ai Y, Zhong H, Kuang T, Dincer C, Urban GA, Hu J (2021) A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics. Biosens Bioelectron 178:113027. https://doi.org/10.1016/j.bios.2021.113027

    Article  CAS  PubMed  Google Scholar 

  98. Sun X, Sun J, Ye Y, Ji J, Sheng L, Yang D, Sun X (2023) Metabolic pathway-based self-assembled Au@MXene liver microsome electrochemical biosensor for rapid screening of aflatoxin B1. Bioelectrochemistry 151:108378. https://doi.org/10.1016/j.bioelechem.2023.108378

    Article  CAS  PubMed  Google Scholar 

  99. Yang H, Wang P, Geng F, Wu Q, Song F, Ding C (2023) Copolymerization of zwitterionic sulfobetaine and hydrophobic acrylamide based antifouling electrochemical biosensors for detection of CA125 in clinical serum samples. Sensors Actuators B Chem 387:133820. https://doi.org/10.1016/j.snb.2023.133820

    Article  CAS  Google Scholar 

  100. Shi K, Yi Z, Han Y, Chen J, Hu Y, Cheng Y, Liu S, Wang W, Song J (2023) PAM-free cascaded strand displacement coupled with CRISPR-Cas12a for amplified electrochemical detection of SARS-CoV-2 RNA. Anal Biochem. https://doi.org/10.1016/j.ab.2023.115046

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sanchez F, Sobolev K (2010) Nanotechnology in concrete - A review. Constr Build Mater 24:2060–2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014

    Article  Google Scholar 

  102. Pérez-López B, Merkoçi A (2011) Nanomaterials based biosensors for food analysis applications. Trends Food Sci Technol 22:625–639. https://doi.org/10.1016/j.tifs.2011.04.001

    Article  CAS  Google Scholar 

  103. Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1:172–179. https://doi.org/10.1002/smll.200400130

    Article  CAS  PubMed  Google Scholar 

  104. Petrie AA, van der Ven AM, Honek JF (2013) Nanomaterial-based biosensors. Biosens Their Appl Healthc. https://doi.org/10.4155/EBO.13.300

    Article  Google Scholar 

  105. Clark HA, Hoyer M, Philbert MA, Kopelman R (1999) Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71:4831–4836. https://doi.org/10.1021/ac990629o

    Article  CAS  PubMed  Google Scholar 

  106. Patolsky F, Lieber CM (2005) Nanowire nanosensors. Mater Today 8:20–28. https://doi.org/10.1016/S1369-7021(05)00791-1

    Article  CAS  Google Scholar 

  107. Lee JR, Haddon DJ, Gupta N, Price JV, Credo GM, Diep VK, Kim K, Hall DA, Baechler EC, Petri M, Varma M, Utz PJ, Wang SX (2016) High-Resolution analysis of antibodies to post-translational modifications using peptide nanosensor microarrays. ACS Nano 10:10652–10660. https://doi.org/10.1021/acsnano.6b03786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pison U, Welte T, Giersig M, Groneberg DA (2006) Nanomedicine for respiratory diseases. Eur J Pharmacol 533:341–350. https://doi.org/10.1016/j.ejphar.2005.12.068

    Article  CAS  PubMed  Google Scholar 

  109. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851. https://doi.org/10.1897/08-090.1

    Article  CAS  PubMed  Google Scholar 

  110. Jutz G, Böker A (2011) Bionanoparticles as functional macromolecular building blocks - A new class of nanomaterials. Polymer (Guildf) 52:211–232. https://doi.org/10.1016/j.polymer.2010.11.047

    Article  CAS  Google Scholar 

  111. Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114:10131–10176. https://doi.org/10.1021/cr400625j

    Article  CAS  PubMed  Google Scholar 

  112. El Jaouhari A, Yan L, Zhu J, Zhao D, Khan MZH, Liu X (2020) Enhanced molecular imprinted electrochemical sensor based on zeolitic imidazolate framework/reduced graphene oxide for highly recognition of rutin. Anal Chim Acta 1106:103–114. https://doi.org/10.1016/j.aca.2020.01.039

    Article  CAS  PubMed  Google Scholar 

  113. Fan L, Kan X (2020) Sensitive detection of butylated hydroxyanisole based on free-standing paper decorated with gold and NiO nanoparticles. Microchem J 159:105511. https://doi.org/10.1016/j.microc.2020.105511

    Article  CAS  Google Scholar 

  114. Yan F, Wang M, Jin Q, Zhou H, Xie L, Tang H, Liu J (2021) Vertically-ordered mesoporous silica films on graphene for anti-fouling electrochemical detection of tert-butylhydroquinone in cosmetics and edible oils. J Electroanal Chem 881:114969. https://doi.org/10.1016/j.jelechem.2020.114969

    Article  CAS  Google Scholar 

  115. El Jaouhari A, Wang Y, Zhang B, Liu X, Zhu J (2020) Effect of surface properties on the electrochemical response of cynarin by electro-synthesized functionalized-polybithiophene/MWCNT/GNP. Mater Sci Eng C 114:111067. https://doi.org/10.1016/j.msec.2020.111067

    Article  CAS  Google Scholar 

  116. Freitas RC, Orzari LO, Ferreira LMC, Paixão TRLC, Coltro WKT, Vicentini FC, Janegitz BC (2021) Electrochemical determination of melatonin using disposable self-adhesive inked paper electrode. J Electroanal Chem 897:115550. https://doi.org/10.1016/j.jelechem.2021.115550

    Article  CAS  Google Scholar 

  117. Arumugasamy SK, Kanagavalli P, Veerapandian M, Jayaraman M, Yun K (2021) Electrochemical properties of Rubpy-reduced graphene oxide synergized by ultrasonication for label-free quercetin sensing. Appl Surf Sci 537:147777. https://doi.org/10.1016/j.apsusc.2020.147777

    Article  CAS  Google Scholar 

  118. Tümay SO, Şenocak A, Sarı E, Şanko V, Durmuş M, Demirbas E (2021) A new perspective for electrochemical determination of parathion and chlorantraniliprole pesticides via carbon nanotube-based thiophene-ferrocene appended hybrid nanosensor. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2021.130344

    Article  Google Scholar 

  119. Şenocak A, Köksoy B, Akyüz D, Koca A, Klyamer D, Basova T, Demirbaş E, Durmuş M (2019) Highly selective and ultra-sensitive electrochemical sensor behavior of 3D SWCNT-BODIPY hybrid material for eserine detection. Biosens Bioelectron 128:144–150. https://doi.org/10.1016/J.BIOS.2018.12.052

    Article  PubMed  Google Scholar 

  120. Ramanathan S, Thamilselvan A, Radhika N, Padmanabhan D, Durairaj A, Obadiah A, Sharmila Lydia I, Vasanthkumar S (2021) Development of rutin-rGO/TiO2 nanocomposite for electrochemical detection and photocatalytic removal of 2,4-DCP. J Iran Chem Soc 18:2457–2472. https://doi.org/10.1007/S13738-021-02205-Z

    Article  CAS  Google Scholar 

  121. Sabzehmeidani MM, Kazemzad M (2022) Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: a review. Sci Total Environ 810:151997. https://doi.org/10.1016/j.scitotenv.2021.151997

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Karimian N, Gholivand MB, Malekzadeh G (2016) Cefixime detection by a novel electrochemical sensor based on glassy carbon electrode modified with surface imprinted polymer/multiwall carbon nanotubes. J Electroanal Chem 771:64–72. https://doi.org/10.1016/j.jelechem.2016.03.042

    Article  CAS  Google Scholar 

  123. Turco A, Corvaglia S, Pompa PP, Malitesta C (2021) An innovative and simple all electrochemical approach to functionalize electrodes with a carbon nanotubes/polypyrrole molecularly imprinted nanocomposite and its application for sulfamethoxazole analysis. J Colloid Interface Sci 599:676–685. https://doi.org/10.1016/j.jcis.2021.04.133

    Article  ADS  CAS  PubMed  Google Scholar 

  124. Xie P, Liu Z, Huang S, Chen J, Yan Y, Li N, Zhang M, Jin M, Shui L (2022) A sensitive electrochemical sensor based on wrinkled mesoporous carbon nanomaterials for rapid and reliable assay of 17β-estradiol. Electrochim Acta. https://doi.org/10.1016/j.electacta.2022.139960

    Article  Google Scholar 

  125. Ghadirinataj M, Hassaninejad-Darzi SK, Emadi H (2023) An electrochemical nanosensor for simultaneous quantification of acetaminophen and acyclovir by ND@Dy2O3-IL/CPE. Electrochim Acta 450:142274. https://doi.org/10.1016/j.electacta.2023.142274

    Article  CAS  Google Scholar 

  126. Ozkan E, Cetinkaya A, Ozcelikay G, Nemutlu E, Kır S, Ozkan SA (2022) Sensitive and cost-effective boron doped diamond and Fe2O3/Chitosan nanocomposite modified glassy carbon electrodes for the trace level quantification of anti-diabetic dapagliflozin drug. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2022.116092

    Article  Google Scholar 

  127. Cetinkaya A, Kaya SI, Şenel P, Cini N, Atici EB, Ozkan SA, Yurtsever M, Gölcü A (2022) Detection of Axitinib Using Multiwalled Carbon Nanotube-Fe2O3/Chitosan Nanocomposite-Based Electrochemical Sensor and Modeling with Density Functional Theory. ACS Omega 7:34495–34505. https://doi.org/10.1021/acsomega.2c04244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Parihar A, Choudhary NK, Sharma P, Khan R (2023) Carbon nanomaterials-based electrochemical aptasensor for point-of-care diagnostics of cancer biomarkers. Mater Today Chem 30:101499. https://doi.org/10.1016/j.mtchem.2023.101499

    Article  CAS  Google Scholar 

  129. Mohan AMV, Windmiller JR, Mishra RK, Wang J (2017) Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens Bioelectron 91:574–579. https://doi.org/10.1016/j.bios.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  130. Ciui B, Martin A, Mishra RK, Brunetti B, Nakagawa T, Dawkins TJ, Lyu M, Cristea C, Sandulescu R, Wang J (2018) Wearable wireless tyrosinase bandage and microneedle sensors: toward melanoma screening. Adv Healthc Mater 7:1–9. https://doi.org/10.1002/adhm.201701264

    Article  CAS  Google Scholar 

  131. Bao L, Park J, Qin B, Kim B (2022) Anti-SARS-CoV-2 IgM/IgG antibodies detection using a patch sensor containing porous microneedles and a paper-based immunoassay. Sci Rep 12:1–16. https://doi.org/10.1038/s41598-022-14725-6

    Article  CAS  Google Scholar 

  132. Arakawa T, Tomoto K, Nitta H, Toma K, Takeuchi S, Sekita T, Minakuchi S, Mitsubayashi K (2020) A wearable cellulose acetate-coated mouthguard biosensor for in vivo salivary glucose measurement. Anal Chem 92:12201–12207. https://doi.org/10.1021/acs.analchem.0c01201

    Article  CAS  PubMed  Google Scholar 

  133. Song H, Shin H, Seo H, Park W, Joo BJ, Kim J, Kim J, Kim HK, Kim J, Park JU (2022) Wireless Non-Invasive Monitoring of Cholesterol Using a Smart Contact Lens. Adv Sci 9:1–11. https://doi.org/10.1002/advs.202203597

    Article  Google Scholar 

  134. Kim J, Kim M, Lee MS, Kim K, Ji S, Kim YT, Park J, Na K, Bae KH, Kim HK, Bien F, Lee CY, Park JU (2017) Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun. https://doi.org/10.1038/ncomms14997

    Article  PubMed  PubMed Central  Google Scholar 

  135. Elsherif M, Hassan MU, Yetisen AK, Butt H (2018) Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 12:5452–5462. https://doi.org/10.1021/acsnano.8b00829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ye Y, Ge Y, Zhang Q, Yuan M, Cai Y, Li K, Li Y, Xie R, Xu C, Jiang D, Qu J, Liu X, Wang Y (2022) Smart contact lens with dual-sensing platform for monitoring intraocular pressure and matrix metalloproteinase-9. Adv Sci 9:1–11. https://doi.org/10.1002/advs.202104738

    Article  CAS  Google Scholar 

  137. Sempionatto JR, Brazaca LC, García-Carmona L, Bolat G, Campbell AS, Martin A, Tang G, Shah R, Mishra RK, Kim J, Zucolotto V, Escarpa A, Wang J (2019) Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosens Bioelectron 137:161–170. https://doi.org/10.1016/j.bios.2019.04.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bandodkar AJ, Jia W, Yard C, Wang X, Ramirez J, Wang J (2015) Tattoo-based noninvasive glucose monitoring: a proof-of-concept study

  139. Kim S, Lee B, Reeder JT, Seo SH, Lee SU, Hourlier-Fargette A, Shin J, Sekine Y, Jeong H, Oh YS, Aranyosi AJ, Lee SP, Model JB, Lee G, Seo MH, Kwak SS, Jo S, Park G, Han S, Park I, Il Jung H, Ghaffari R, Koo J, Braun PV, Rogers JA (2020) Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc Natl Acad Sci U S A 117:27906–27915. https://doi.org/10.1073/pnas.2012700117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. Luo X, Shi W, Yu H, Xie Z, Li K, Cui Y (2018) Wearable carbon nanotube-based biosensors on gloves for lactate. Sensors (Switzerland). https://doi.org/10.3390/s18103398

    Article  PubMed Central  Google Scholar 

  141. Raymundo-Pereira PA, Gomes NO, Machado SAS, Oliveira ON (2022) Wearable glove-embedded sensors for therapeutic drug monitoring in sweat for personalized medicine. Chem Eng J 435:135047. https://doi.org/10.1016/j.cej.2022.135047

    Article  CAS  Google Scholar 

  142. Li Z, Wang Y, Fan Z, Sun Y, Sun Y, Yang Y, Zhang Y, Ma J, Wang Z, Zhu Z (2023) A dual-function wearable electrochemical sensor for uric acid and glucose sensing in sweat. Biosensors. https://doi.org/10.3390/bios13010105

    Article  PubMed  PubMed Central  Google Scholar 

  143. Amit M, Mishra RK, Hoang Q, Galan AM, Wang J, Ng TN (2019) Point-of-use robotic sensors for simultaneous pressure detection and chemical analysis. Mater Horizons 6:604–611. https://doi.org/10.1039/c8mh01412d

    Article  CAS  Google Scholar 

  144. Raymundo-Pereira PA, Gomes NO, Shimizu FM, Machado SAS, Oliveira ON (2021) Selective and sensitive multiplexed detection of pesticides in food samples using wearable, flexible glove-embedded non-enzymatic sensors. Chem Eng J. https://doi.org/10.1016/j.cej.2020.127279

    Article  Google Scholar 

  145. Ciui B, Tertiş M, Cernat A, Sǎndulescu R, Wang J, Cristea C (2018) Finger-based printed sensors integrated on a glove for on-site screening of Pseudomonas aeruginosa virulence factors. Anal Chem 90:7761–7768. https://doi.org/10.1021/acs.analchem.8b01915

    Article  CAS  PubMed  Google Scholar 

  146. Barfidokht A, Mishra RK, Seenivasan R, Liu S, Hubble LJ, Wang J, Hall DA (2019) Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sensors Actuators B Chem 296:126422. https://doi.org/10.1016/j.snb.2019.04.053

    Article  CAS  Google Scholar 

  147. Li J, Bo X (2022) Laser-enabled flexible electrochemical sensor on finger for fast food security detection. J Hazard Mater 423:127014. https://doi.org/10.1016/j.jhazmat.2021.127014

    Article  CAS  PubMed  Google Scholar 

  148. Farshchi F, Saadati A, Kholafazad-Kordasht H, Seidi F, Hasanzadeh M (2021) Trifluralin recognition using touch-based fingertip: Application of wearable glove-based sensor toward environmental pollution and human health control. J Mol Recognit. https://doi.org/10.1002/jmr.2927

    Article  PubMed  Google Scholar 

  149. Mahmoudpour M, Saadati A, Hasanzadeh M, Kholafazad-kordasht H (2021) A stretchable glove sensor toward rapid monitoring of trifluralin: A new platform for the on-site recognition of herbicides based on wearable flexible sensor technology using lab-on-glove. J Mol Recognit. https://doi.org/10.1002/jmr.2923

    Article  PubMed  Google Scholar 

  150. Parrilla M, Vanhooydonck A, Watts R, De Wael K (2022) Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids. Biosens Bioelectron 197:113764. https://doi.org/10.1016/j.bios.2021.113764

    Article  CAS  PubMed  Google Scholar 

  151. Mei X, Yang J, Yu X, Peng Z, Zhang G, Li Y (2023) Wearable molecularly imprinted electrochemical sensor with integrated nanofiber-based microfluidic chip for in situ monitoring of cortisol in sweat. Sensors Actuators B Chem 381:133451. https://doi.org/10.1016/j.snb.2023.133451

    Article  CAS  Google Scholar 

  152. Yan T, Zhang G, Yu K, Chai H, Tian M, Qu L, Dong H, Zhang X (2023) Smartphone light-driven zinc porphyrinic MOF nanosheets-based enzyme-free wearable photoelectrochemical sensor for continuous sweat vitamin C detection. Chem Eng J 455:140779. https://doi.org/10.1016/j.cej.2022.140779

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ahmet Cetinkaya thanks the financial support from the Council of Higher Education 100/2000 (YOK) under the special 100/2000 scholarship program and the Scientific and Technological Research Council of Turkey (TUBITAK) under the BIDEB/2211-A Ph.D. and ARDEB/1004 Ph.D. Scholarship Programs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Irem Kaya or Sibel A. Ozkan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetinkaya, A., Kaya, S.I. & Ozkan, S.A. A collection of the best practice examples of electroanalytical applications in education: from polarography to sensors. J Solid State Electrochem 28, 869–895 (2024). https://doi.org/10.1007/s10008-023-05637-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05637-0

Keywords

Navigation