Skip to main content

Advertisement

Log in

Molybdenum disulfide as a propitious electrochemical sensing material: a mini review

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Diagnosing health-related issues, environment monitoring, meteorology, and detecting toxic reagents are serious issues to be taken care of with the assistance of a suitable sensor. This review explores the competence of molybdenum disulfide within the sensing province. The physical and chemical properties of molybdenum disulfide have been discussed thoroughly in order to justify its suitability as an electrochemical sensing material. A detailed outline of various synthesis techniques used to prepare molybdenum disulfide has been explored. In this work, an overview of the materials which have been detected by employing molybdenum disulfide-based nanocomposites is given. The main highlight of this review is to explore electrochemical sensing applications of molybdenum disulfide-based nanocomposites in multiple sectors. Further issues are discussed, giving future scope to emerging researchers to work in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright Royal Society Chemistry 2023

Fig. 2
Fig. 3

Copyright Royal Society Chemistry 2023

Fig. 4

Copyright Royal Society Chemistry 2023

Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Javaid M, Haleem A, Rab S, Pratap Singh RP, Suman R (2021) Sens Int 2:100121. https://doi.org/10.1016/j.sintl.2021.100121

  2. Global Health Estimates (2020) World Health Organization, Geneva. https://www.who.int/docs/default-source/ghodocuments/global-health-estimates/ghe2019_cod_methods.pdf. Accessed 30 May 2023

  3. Barua S, Dutta HS, Gogoi S, Devi R, Khan R (2018) ACS Appl Nano Mater 1:2–25. https://doi.org/10.1021/acsanm.7b00157

    Article  CAS  Google Scholar 

  4. Sinha A, Dhanjai BT, Tan B, Huang Y, Zhao H, Dang X (2018) TrAC Trends Anal Chem 102:75–90. https://doi.org/10.1016/j.trac.2018.01.008

    Article  CAS  Google Scholar 

  5. Bakker E, Martin TD (2002) ACS Appl Nano Mater 74:2781–2800. https://doi.org/10.1021/ac0202278

    Article  CAS  Google Scholar 

  6. Betancourt T, Peppas LB (2006) Int J Nanomedicine 4:483–495. https://doi.org/10.2147/nano.2006.1.4.483

    Article  Google Scholar 

  7. Hanrahan G, Patil DG, Wang (2004) J Environ Monit 6:657–664. https://doi.org/10.1039/b403975k

  8. Das S, Kim M, Lee J-W, Choi W (2014) Crit Rev Solid State Mater Sci 39:231–252. https://doi.org/10.1080/10408436.2013.836075

    Article  CAS  Google Scholar 

  9. Allen MJ, Tung VC, Kaner RB (2009) Chem Rev 110:132–145. https://doi.org/10.1021/cr900070d

    Article  CAS  Google Scholar 

  10. Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) J Am Chem Soc 135:5998–6001. https://doi.org/10.1021/ja4019572

    Article  CAS  PubMed  Google Scholar 

  11. Bolotsky A, Butler D, Dong C, Gerace K, Glavin NR, Muratore C (2019) ACS Nano 13:9781–9810. https://doi.org/10.1021/acsnano.9b03632

    Article  CAS  PubMed  Google Scholar 

  12. Wilson JA, Yoffe AD (1969) Adv Phys 18:193–335. https://doi.org/10.1080/00018736900101307

    Article  CAS  Google Scholar 

  13. Samy O, Zeng S, Birowosuto MD, El Moutaouakil AE (2021) Crystals 11:355. https://doi.org/10.3390/cryst11040355

    Article  CAS  Google Scholar 

  14. Jiang JW (2015) Front Phys 10:287–302. https://doi.org/10.1007/s11467-015-0459-z

    Article  CAS  Google Scholar 

  15. Rahman MT, Kumar R, Kumar M, Qiao Q (2021) Sens Actuators A Phys 318:112517. https://doi.org/10.1016/j.sna.2020.112517

  16. Muratore C, Hu JJ, Wang B, Haque MA, Bultman JE (2014) Appl Phys Lett 26:261604. https://doi.org/10.1063/1.4885391

  17. Hong S, Sheng C, Krishnamoorthy A, Rajak P, Tiwari S, Nomura K (2018) J Phys Chem C 122:7494–7503. https://doi.org/10.1021/acs.jpcc.7b12035

    Article  CAS  Google Scholar 

  18. Venkata Subbaiah YPV, Saji KJ, Tiwari A (2016) Adv Funct Mater 26:2046–2069. https://doi.org/10.1002/adfm.201504202

    Article  CAS  Google Scholar 

  19. Elfadil D, Lamaoui A, Della Pelle FD, Amine A, Compagnone D (2021) Molecules 26:4607. https://doi.org/10.3390/molecules26154607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu C, Hu S (2009) J Sens 2009:1–40. https://doi.org/10.1155/2009/187615

    Article  CAS  Google Scholar 

  21. Al Hamrashdi HA, Monk SD, Cheneler D (2019) Sensors 19:2638. https://doi.org/10.3390/s19112638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cavalcanti A, Shirinzadeh B, Zhang M, Kretly LC (2008) Sensors 8:2932–2958. https://doi.org/10.3390/s8052932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar R, Zheng W, Liu X, Zhang J, Kumar M (2020) Adv Mater Technol 5:1901062. https://doi.org/10.1002/admt.201901062

    Article  CAS  Google Scholar 

  24. Mandal S, Song G (2014) Text Res J 85:101–112. https://doi.org/10.1177/0040517514542864

    Article  CAS  Google Scholar 

  25. Islam MM, Rony JH, Akhtar MN, Shakil SUP, Uddin J (2023) In: Marques G, González-Briones A (ed) Internet of Things for Smart Environments, Springer Cham, Switzerland. https://doi.org/10.1007/978-3-031-09729-4_4

  26. Xu F, Li X, Shi Y, Li L, Wang W, He L (2018) Micromachines 9:580. https://doi.org/10.3390/mi9110580

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bai Y, Lu L, Cheng J, Liu J, Chen Y, Yu J (2020) Comput Netw 181:107447. https://doi.org/10.1016/j.comnet.2020.107447

  28. Bertrand A (2011) In: 18th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT), IEEE 1–6.https://doi.org/10.1109/SCVT.2011.6101302

  29. Wang W, Pei Y, Ye L, Song K (2020) Sensors 20:6422. https://doi.org/10.3390/s20226422

    Article  PubMed  PubMed Central  Google Scholar 

  30. Guler U, Tufan TB, Chakravarti A, Jin Y, Ghovanloo M (2023) In: Mehmet R Y (ed) Encyclopedia of Sensors and Biosensors, 1st edn, Elsevier, United States. https://doi.org/10.1016/B978-0-12-822548-6.00072-8

  31. Ripka P, Závěta K (2009) In: Handbook of Magnetic Materials, Elsevier 18:347–420. https://doi.org/10.1016/S1567-2719(09)01803-4

  32. Battersby BJ, Chen A, Kozak D, Trau M (2012) In: Séamus Higson (ed) Biosensors for Medical Applications, 1st edn. Woodhead Publishing Series in Biomaterials, Australia. https://doi.org/10.1533/9780857097187.2.191

  33. Norman T (2014) Integrated security systems design. Elsevier, Boston. https://doi.org/10.1016/B978-0-12-800022-9.09997-6

    Article  Google Scholar 

  34. Mehrotra P (2016) J Oral Biol Craniofac Res 6:153–159. https://doi.org/10.1016/j.jobcr.2015.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gaudin V (2020) Biosensors 10:21. https://doi.org/10.3390/bios10030021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saxena R, Srivastava S (2019) Mater Today Proc 18:1351–1357. https://doi.org/10.1016/j.matpr.2019.06.600.18

    Article  CAS  Google Scholar 

  37. Erden PE, Kılıç E (2013) Talanta 107:312–323. https://doi.org/10.1016/j.talanta.2013.01.043

    Article  CAS  PubMed  Google Scholar 

  38. Yoo EH, Lee SY (2010) Sensors 10:4558–4576. https://doi.org/10.3390/s100504558

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jung TH (2022) ACS Sensors 7:912–913. https://doi.org/10.1021/acssensors.2c00688

    Article  CAS  PubMed  Google Scholar 

  40. Feng S, Farha F, Li Q, Wan Y, Xu Y, Zhang T (2019) Sensors 19:3760. https://doi.org/10.3390/s19173760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng L, Wang J, Chen Y, Ding C (2021) J Sens 2021:1–11. https://doi.org/10.1155/2021/6988676

    Article  CAS  Google Scholar 

  42. Suma V, Shekar RR, Akshay KA (2019) In: 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA) 2019. https://doi.org/10.1109/ICECA.2019.8822055

  43. Francioso A, Baseggio Conrado AB, Mosca L, Fontana M (2020) Oxid Med Cell Longev 2020:1–27. https://doi.org/10.1155/2020/8294158

    Article  CAS  Google Scholar 

  44. Ravikumar A, Panneerselvam P, Radhakrishnan K, Christus AAB, Sivanesan S (2018) Appl Surf Sci 449:31–38. https://doi.org/10.1016/j.apsusc.2017.12.098

    Article  CAS  Google Scholar 

  45. Kumar NA, Dar MA, Gul R, Baek JB (2015) Mater Today 18:286–298. https://doi.org/10.1016/j.mattod.2015.01.016

    Article  CAS  Google Scholar 

  46. Sebenik RF, Burkin AR, Dorfler RR, Laferty JM, Leichtfried G, Meyer-Grünow H (2000) Ullmann's encyclopedia of industrial chemistry.Wiley-VCH Verlag GmbH & Co. KGaA, Berlin. https://doi.org/10.1002/14356007

  47. El-Mahalawy SH, Evans BL (1976) J Appl Crystallogr 9:403–406. https://doi.org/10.1107/S0021889876011709

    Article  Google Scholar 

  48. Arif Khalil RM, Hussain F, Manzoor Rana A, Imran M, Murtaza G (2019) Phys E Low Dimensional Syst Nanostruct 106:338–345. https://doi.org/10.1016/j.physe.2018.07.003

    Article  CAS  Google Scholar 

  49. Wypych F, Schöllhorn R (1992) J Chem Soc 1992:1386–1388. https://doi.org/10.1039/C39920001386

    Article  Google Scholar 

  50. Radisavljevic B (2011) Radenovic A Brivio, J Giacometti V, Kis A. Nat Nanotechnol 6:147–150. https://doi.org/10.1038/nnano.2010.279

    Article  CAS  PubMed  Google Scholar 

  51. Somoano R, Hadek V, Rembaum A, Wolfe HC, Douglass DH (1971) Phys Rev Lett 27:402–404. https://doi.org/10.1103/PhysRevLett.27.402

    Article  CAS  Google Scholar 

  52. Chen F, Su W, Zhao S, Lv Y, Ding S, Fu L (2020) CrystEngComm 22:4174–4179. https://doi.org/10.1039/D0CE00558D

    Article  CAS  Google Scholar 

  53. Neetika AK, Kumar A, Chandra R, Malik VK (2021) Thin Solid Films 725. https://doi.org/10.1016/j.tsf.2021.138625

  54. Chithaiah P, Ghosh S, Idelevich A, Rovinsky L, Livneh T, Zak A (2020) ACS Nano 14:3004–3016. https://doi.org/10.1021/acsnano.9b07866

    Article  CAS  PubMed  Google Scholar 

  55. Kobayashi K, Yamauchi J (1995) Phys Rev B Condens Matter 51:17085–17095. https://doi.org/10.1103/physrevb.51.17085

    Article  CAS  PubMed  Google Scholar 

  56. Tan X, Kang W, Liu J, Zhang C (2019) Nanoscale Res Lett 14:317. https://doi.org/10.1186/s11671-019-3126-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sahoo D, Kumar B, Sinha J, Ghosh S, Roy SS, Kaviraj B (2020) Sci Rep 10:10759. https://doi.org/10.1038/s41598-020-67683-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Adilbekova B, Lin Y, Yengel E, Faber H, Harrison G, Firdaus Y (2020) J Mater Chem C 8:5259–5264. https://doi.org/10.1039/D0TC00659A

    Article  CAS  Google Scholar 

  59. Yadav S, Chaudhary P, Uttam KN, Varma A, Vashistha M, Yadav BC (2019) Nanotechnology 30:29550. https://doi.org/10.1088/1361-6528/ab1569

    Article  CAS  Google Scholar 

  60. Kandhasamy DM, Muthu Mareeswaran PM, Chellappan S, Namasivayam D, Aldahish A, Chidambaram K (2021) ACS Omega 7:629–637. https://doi.org/10.1021/acsomega.1c05250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rajbanshi B, Sarkar S, Sarkar P (2015) RSC Phys Chem Chem Phys 17:26166–26174. https://doi.org/10.1039/c5cp04653j

    Article  CAS  Google Scholar 

  62. Gupta D, Chauhan V, Kumar R (2020) Inorg Chem Commun 121:108200. https://doi.org/10.1016/j.inoche.2020.108200

  63. Ryou J, Kim YS, Kc S, Cho K (2016) Sci Rep 6:29184. https://doi.org/10.1038/srep29184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chu T, Ilatikhameneh H, Klimeck G, Rahman R, Chen Z (2015) Nano Lett 15:8000–8007. https://doi.org/10.1021/acs.nanolett.5b03218

    Article  CAS  PubMed  Google Scholar 

  65. Kamrun S, Jannati NN, Conrad R, Hasan HMdH (2019) Condens Matter 4:11. https://doi.org/10.3390/condmat4020049

  66. Lopez-Sanchez OL, Lembke D, Kayci M, Radenovic A, Kis A (2013) Nat Nanotechnol 8:497–501. https://doi.org/10.1038/nnano.2013.100

    Article  CAS  PubMed  Google Scholar 

  67. Zhang W, Chuu CP, Huang JK, Chen CH, Tsai ML, Chang YH (2014) Sci Rep 4:3826. https://doi.org/10.1038/srep03826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li X, Zhu H (2015) J Materiomics 1:33–44. https://doi.org/10.1016/j.jmat.2015.03.003

    Article  Google Scholar 

  69. Gan X, Lee LYS, Wong K, Lo TW, Ho KH, Lei DY (2018) ACS Appl Energy Mater 1:4754–4765. https://doi.org/10.1021/acsaem.8b00875

    Article  CAS  Google Scholar 

  70. Cooper RC, Lee C, Marianetti CA, Wei X, Hone J, Kysar JW (2013) APS Phys Rev B 87:035423

    Article  Google Scholar 

  71. Bertolazzi S, Brivio J, Kis A (2011) ACS Nano 5:9703–9709. https://doi.org/10.1021/nn203879f

    Article  CAS  PubMed  Google Scholar 

  72. Askari MB, Kalourazi AF, Seifi M, Shahangian SS, Askari N, Manjili TJ (2018) Optik 174:154–162. https://doi.org/10.1016/j.ijleo.2018.08.035

    Article  CAS  Google Scholar 

  73. Jiang JW, Park HS, Rabczuk T (2014) Nanoscale 6:3618. https://doi.org/10.1039/c3nr05991j

    Article  CAS  PubMed  Google Scholar 

  74. Jiang JW, Qi Z, Park HS, Rabczuk T (2013) Nanotechnol 24:435705. https://doi.org/10.1088/0957-4484/24/43/435705

  75. Ali L, Subhan F, Ayaz M, Hassan SSU, Byeon CC, Kim JS (2022) Nanomaterials 12:3465. https://doi.org/10.3390/nano12193465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Reshmi S, Akshaya MV, Satpati B, Roy A, Kumar Basu PK, Bhattacharjee K (2017) Mater Res Express 4:115012. https://doi.org/10.1088/2053-1591/aa949c

  77. Pyeon JJ, Kim SH, Jeong DS, Baek SH, Kang CY, Kim JS (2016) Nanoscale 8:10792–10798. https://doi.org/10.1039/c6nr01346e

    Article  CAS  PubMed  Google Scholar 

  78. Li H, Wu J, Yin Z, Zhang H (2014) Acc Chem Res 47:1067–1075. https://doi.org/10.1021/ar4002312

    Article  CAS  PubMed  Google Scholar 

  79. Li D, Liu X, Yi R, Zhang J, Su Z, Wei G (2018) Inorg Chem Front 5:112–119. https://doi.org/10.1039/C7QI00542C

    Article  CAS  Google Scholar 

  80. Li S, Ma Y, Liu Y, Xin G, Wang M, Zhang Z (2019) RSC Adv 9:2997–3003. https://doi.org/10.1039/c8ra09511f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aswathi R, Sandhya KY (2018) J Mater Chem A 6:14602–14613. https://doi.org/10.1039/C8TA00476E

    Article  CAS  Google Scholar 

  82. Petit-Domínguez MD, Quintana C, Vázquez L, del Pozo M, Cuadrado I, Parra-Alfambra AM (2018) Microchim Acta 185:334. https://doi.org/10.1007/s00604-018-2793-7

    Article  CAS  Google Scholar 

  83. Gupta A, Neal C, Das S, Seal S (2016) IEEE Sens J 1–3. https://doi.org/10.1109/ICSENS.2016.7808467

  84. Qiao X, Li K, Xu J, Cheng N, Sheng Q, Cao W (2018) Biosens Bioelectron 113:142–147. https://doi.org/10.1016/j.bios.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  85. Huang M (2021) Int J Electrochem Sci 151014. https://doi.org/10.20964/2021.01.24

  86. Sha R, Vishnu N, Badhulika S (2019) Sens Actuators B: Chem 279:53–60. https://doi.org/10.1016/j.snb.2018.09.106

    Article  CAS  Google Scholar 

  87. Huang KJ, Wang L, Li J, Liu YM (2013) Sens Actuators B: Chem 178:671–677. https://doi.org/10.1016/j.snb.2013.01.028

    Article  CAS  Google Scholar 

  88. Park SY, Lee JE, Kim YH, Kim JJ, Shim Y-S, Kim SY (2018) Sens Actuators B: Chem 258:775–782. https://doi.org/10.1016/j.snb.2017.11.176

    Article  CAS  Google Scholar 

  89. Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Acc Chem Res 47:1338–1348. https://doi.org/10.1021/ar400309b

    Article  CAS  PubMed  Google Scholar 

  90. Reeja-Jayan B, Harrison KL, Yang K, Wang CL, Yilmaz AE, Manthiram A (2012) Sci Rep 2:1003. https://doi.org/10.1038/srep01003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fathy M, Hassan H, Hafez H, Soliman M, Abulfotuh F, Kashyout AEHB (2022) ACS Omega 7:16757–16765. https://doi.org/10.1021/acsomega.2c01455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sharma S, Kumar P, Jabeen S, Samra KS (2022) J Mater Sci Mater Electron 33:21048–21059. https://doi.org/10.1007/s10854-022-08909-z

    Article  CAS  Google Scholar 

  93. Zhang W, Zhang P, Su Z, Wei G (2015) Nanoscale 7:18364–18378. https://doi.org/10.1039/c5nr06121k

    Article  CAS  PubMed  Google Scholar 

  94. Feng SH, Li GH (2017) In: Xu R, Xu Y (ed) Modern inorganic synthetic chemistry, 2nd edn. Elsevier, China. https://doi.org/10.1016/B978-0-444-63591-4.00004-5

  95. Rafiq MKSB, Akhtaruzzaman M (2022) In: Akhtaruzzaman M, Selvanathan V (ed) Comprehensive Guide on Organic and Inorganic Solar Cells, Academic Press, Malaysia. https://doi.org/10.1016/B978-0-323-85529-7.00012-8

  96. Hussain CM, Keçili R (2020) Modern environmental analysis techniques for pollutants. Elsevier, US. https://doi.org/10.1016/C2018-0-01639-4

    Article  Google Scholar 

  97. Wang Y, Zeng S, Humbert G, Ho AHP (2023) In: Wing C M, Ho APH (ed) Microfluidic Biosensors, Academic Press, Hong Kong. https://doi.org/10.1016/B978-0-12-823846-2.00003-1

  98. Curulli A (2020) Molecules 25:5759. https://doi.org/10.3390/molecules25235759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Sensors 8:1400–1458. https://doi.org/10.3390/s80314000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kumar A, Malinee M, Dhiman A, Kumar A, Sharma TK (2019) In: Inamuddin, Khan R, Ali M, Abdullah AM (ed) Advanced Biosensors for Health Care Applications, Elsevier, US. https://doi.org/10.1016/B978-0-12-815743-5.00002-0

  101. Ju L (2021) Int J Electrochem Sci 16:2021. https://doi.org/10.20964/2021.07.36

    Article  CAS  Google Scholar 

  102. Arfin T (2021) Functionalized nanomaterials based devices for environmental applications, Elsevier 199–218. https://doi.org/10.1016/B978-0-12-822245-4.00008-8

  103. Venton BJ, DiScenza DJ (2020) Electrochemistry for bioanalysis, Elsevier 27–50. https://doi.org/10.1016/B978-0-12-821203-5.00004-X

  104. Aoki K, Honda K, Tokuda K, Matsuda H (1985) J Electroanal Chem Interfacial Electrochem 182:267–279. https://doi.org/10.1016/0368-1874(85)87005-2

    Article  CAS  Google Scholar 

  105. Cobb SJ, Macpherson JV (2019) Anal Chem 91:7935–7942. https://doi.org/10.1021/acs.analchem.9b01857

    Article  CAS  PubMed  Google Scholar 

  106. Honeychurch MJ, Díaz-Cruz JM, Serrano N, Ariño C, Esteban M (2018) In: Paul W, Colin P, Alan T, Maneul M (ed) Reference module in chemistry, molecular sciences and chemical engineering, 3rd edn. Elsevier, UK. https://doi.org/10.1016/B978-0-12-409547-2.14432-4

  107. Zhang W, Xiahou C, Ji X, Zhang Y, Zhang H, Song S (2022) Int J Electrochem Sci 17. https://doi.org/10.20964/2022.09.29

  108. Guo C, Wang C, Sun H, Dai D, Gao H (2021) RSC Adv 11:29590–29597. https://doi.org/10.1039/d1ra05350g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hu J, Zhang C, Li X, Du X (2020) Sensors 20:6817. https://doi.org/10.3390/s20236817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zribi R, Foti A, Donato MG, Gucciardi PG, Neri G (2021) Sensors 21:1371. https://doi.org/10.3390/s21041371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lin J, Mei Q, Duan Y, Yu C, Ding Y, Li L (2020) ECS Meeting Abstracts MA2020-01:1941–1941. https://doi.org/10.1149/MA2020-01271941mtgabs

  112. Devi R, Gogoi S, Barua S, Sankar Dutta HS, Bordoloi M, Khan R (2019) Food Chem 276:350–357. https://doi.org/10.1016/j.foodchem.2018.10.024

    Article  CAS  PubMed  Google Scholar 

  113. Huang KJ, Wang L, Li J, Liu YM (2013) Sens Actuators B Chem 178:671–677. https://doi.org/10.1016/j.snb.2013.01.028

    Article  CAS  Google Scholar 

  114. Mahobiya SK, Balayan S, Chauhan N, Kuchhal NK, Islam SS, Jain U (2022) Biointerface Res Appl Chem 13:352. https://doi.org/10.33263/BRIAC134.352

    Article  Google Scholar 

  115. Yan Q, Wu R, Chen H, Nan W (2023) J Saudi Chem Soc 27:101612. https://doi.org/10.1016/j.jscs.2023.101612

  116. Wang Q, Wang M, Zhang N, Huang X, Wang X, Wang S (2022) Microchem J 189:108434. https://doi.org/10.1016/j.microc.2023.108434

  117. Kumar S, Singh D, Pathania D, Awasthi A, Singh K (2023) Mater Chem Phys 297:127446. https://doi.org/10.1016/j.matchemphys.2023.127446

  118. Ramya M, Kumar PS, Rangasamy G, Shankar VU, Rajesh G, Nirmala K (2023) Environ Res 216:114463. https://doi.org/10.1016/j.envres.2022.114463

  119. Qiao Z, Jiang X (2017) Org Biomol Chem 15:1942–1946. https://doi.org/10.1039/c6ob02833k

    Article  CAS  PubMed  Google Scholar 

  120. Kumar S, Awasthi A, Sharma MD, Singh K, Singh D (2022) Mater Chem Phys 290:126656. https://doi.org/10.1016/j.matchemphys.2022.126656

  121. Neethipathi DK, Ganguly P, Beniwal A, Scott M, Bass A, Dahiya R (2022) IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS) 2022. https://doi.org/10.1109/FLEPS53764.2022.9781564

  122. Mekonnen ML, Mola AM, Abda EM (2023) ACS Agri Sci Technol 3:82–89. https://doi.org/10.1021/acsagscitech.2c00241

    Article  CAS  Google Scholar 

  123. Jahani PM (2022) J Electrochem Sci Eng 12:1099–1109. https://doi.org/10.5599/jese.1413

    Article  CAS  Google Scholar 

  124. Wang H, Zhu W, Xu T, Zhang Y, Tian Y, Liu X (2022) Food Chem 396:133630. https://doi.org/10.1016/j.foodchem.2022.133630

  125. Yang T, Cui Y, Chen M, Yu R, Luo S, Li W (2017) ACS Sustainable Chem Eng 5:1332–1338. https://doi.org/10.1021/acssuschemeng.6b01699

    Article  CAS  Google Scholar 

  126. Ma Y, Deng M, Wang X, Gao X, Song H, Zhu Y (2022) Anal Chim Acta 1221:340078. https://doi.org/10.1016/j.aca.2022.340078

  127. Chacko L, Massera E, Aneesh PM (2020) J Electrochem Soc 167:106506. https://doi.org/10.1149/1945-7111/ab992c

  128. Lu Y, Liang X, Niyungeko C, Zhou J, Xu J, Tian G (2018) Talanta 178:324–338. https://doi.org/10.1016/j.talanta.2017.08.033

    Article  CAS  PubMed  Google Scholar 

  129. Zhou G, Chang J, Pu H, Shi K, Mao S, Sui X, Ren R, Cui S, Chen J (2016) J ACS Sens 1:295–302. https://doi.org/10.1021/acssensors.5b00241

    Article  CAS  Google Scholar 

  130. Gao C, Yu XY, Xiong SQ, Liu JH, Huang XJ (2013) Anal Chem 85:2673–2680. https://doi.org/10.1021/ac303143x

    Article  CAS  PubMed  Google Scholar 

  131. Chen HY, Wang J, Meng L, Yang T, Jiao K (2016) Chem Lett 27:231–234. https://doi.org/10.1016/j.cclet.2015.09.018

    Article  CAS  Google Scholar 

  132. Chetana S, Kumar N, Choudhary P, Amulya G, Anandakumar CS, Kumar KGB (2023) Mater Chem Phys 294:126869. https://doi.org/10.1016/j.matchemphys.2022.126869

  133. Tien VM, Ong VH, Pham TN, Quang Hoa N, Nguyen TL, Thang PD (2023) RSC Adv 13:10577–10591. https://doi.org/10.1039/d3ra01136d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cazelles R, Shukla RP, Ware RE, Vinks AA, Ben-Yoav H (2020) Biomedicines 9:6. https://doi.org/10.3390/biomedicines9010006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang Y, Zhang J, Li YW, Shan Q, Wu W (2021) Colloids Surf A Physicochem Eng Asp 625:126865. https://doi.org/10.1016/j.colsurfa.2021.126865

  136. Liu D, Gong Q, Xu X, Meng S, Li Y, You T (2023) J Electroanal Chem 930:117143. https://doi.org/10.1016/j.jelechem.2023.117143

  137. Fall B, Sall DD, Hémadi M, Diaw AKD, Fall M, Randriamahazaka H (2023) Sens Actuators Rep 5:100136. https://doi.org/10.1016/j.snr.2022.100136

  138. Kim HU, Kim HY, Kulkarni A, Ahn C, Jin Y, Kim Y (2016) Sci Rep 6:34587. https://doi.org/10.1038/srep345876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rawat B, Mishra KK, Barman U, Arora L, Pal D, Paily RP (2020) IEEE Sens J 20:6937–6944. https://doi.org/10.1109/JSEN.2020.2978275

    Article  CAS  Google Scholar 

  140. Chen C, Chen, Hong (2019) Catalysts 9:653. https://doi.org/10.3390/catal9080653

  141. Alsaeedi H, Alsalme A (2023) Mater 16:1180. https://doi.org/10.3390/ma16031180

    Article  CAS  Google Scholar 

  142. Lin M, Wan H, Zhang J, Wang Q, Hu X, Xia F (2020) ACS Appl Mater Interfaces 12:45814–45821. https://doi.org/10.1021/acsami.0c13385

    Article  CAS  PubMed  Google Scholar 

  143. Adeloju SB (2005) Encyclopedia of analytical science. Elsevier, UK. https://doi.org/10.1016/B0-12-369397-7/00012-1

    Article  Google Scholar 

  144. Li DW, Zhai WL, Li YT, Long YT (2013) Microchim Acta 181:23–43. https://doi.org/10.1007/s00604-013-1115-3

    Article  CAS  Google Scholar 

  145. Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) Sens Actuators B Chem 213:515–533. https://doi.org/10.1016/j.snb.2015.02.122

    Article  CAS  Google Scholar 

  146. Xu X, Yang S, Wang Y, Qian K (2022) Green Anal Chem 2:100020. https://doi.org/10.1016/j.greeac.2022.100020

  147. Arduini F, Cinti S, Scognamiglio V, Moscone D (2020) Handbook of nanomaterials in analytical chemistry. Elsevier, US. https://doi.org/10.1016/B978-0-12-816699-4.00013-X

    Article  Google Scholar 

  148. Ghosh S, AlKafaas SS, Bornman C, Apollon W, Hussien AM, Badawy AE (2022) J Basic Appl Sci 11:73. https://doi.org/10.1186/s43088-022-00248-6

    Article  Google Scholar 

  149. Revenis M, Wong ECC (2021) In: Dietzen D, Bennett M, Wong E, Haymond S (ed) Biochemical and Molecular Basis of Pediatric Disease, 5th edn. Elsevier, US. https://doi.org/10.1016/B978-0-12-817962-8.00006-8

Download references

Acknowledgements

The authors extend their gratitude to the Central Instrumentation Facility, Division of Research and Development, Lovely Professional University, for providing research facilities and a supportive research environment.

Funding

The authors also express their gratitude towards the funds provided by Lovely Professional University under the scheme LPU/DRDSEED/SAC/65.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawaljeet Singh Samra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Kumar, P. & Samra, K.S. Molybdenum disulfide as a propitious electrochemical sensing material: a mini review. J Solid State Electrochem 28, 337–356 (2024). https://doi.org/10.1007/s10008-023-05618-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05618-3

Keywords

Navigation