Skip to main content
Log in

Fabrication of ternary Cu-Sb-Te thin films by electrochemical co-deposition strategy at one-stage process

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Here, we reported the use of electrochemical underpotential deposition (UPD)-based co-deposition method for the synthesis of ternary Cu-Sb-Te thin film, for the first time. The UPD potentials of each metal were enlightened with cyclic voltammetry and then production of thin film was carried out via electrolysis at a constant potential. To reveal the characterization of thin film, several methods were examined based on electrochemical, spectrochemical, electrical and surface imaging. SEM studies proved that the fabricated film had smooth granular crystallites with average size of 80 nm and 24 nm thickness at 30 min deposition time. The atomic composition ratio was obtained as 1:5:3 from the XPS survey. XRD data of the thin film displayed a homogeneous Cu-Sb-Te compound with a single phase. The photoresponse of the fabricated films had nonlinear behavior, referring to the opportunity of applying this thin film in photovoltaic and/or as up-and-coming material in nonlinear devices. Moreover, the proposed method offered an economical and facile way for the fabrication of two-dimensional (2-D) epitaxial ternary thin films with desirable features at one-stage process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ben Saber N, Mezni A, Alrooqi A, Altalhi T (2020) A review of ternary nanostructures based noble metal/semiconductor for environmental and renewable energy applications. J Mater Res Technol 9:15233–15262. https://doi.org/10.1016/j.jmrt.2020.10.090

    Article  CAS  Google Scholar 

  2. Terna AD, Elemike EE, Mbonu JI et al (2021) The future of semiconductors nanoparticles: synthesis, properties and applications. Mater Sci Eng B Solid-State Mater Adv Technol 272:115363. https://doi.org/10.1016/j.mseb.2021.115363

  3. Azizur Rahman A, Bhattacharya A, Sarma A (2022) Synthesis of Cu3SbS4, Cu3SbSe4 and CuSbTe2 thin films via chalcogenation of sputtered Cu-Sb metal precursors. Thin Solid Films 754:2–8. https://doi.org/10.1016/j.tsf.2022.139315

    Article  CAS  Google Scholar 

  4. Tang D, Yang J, Liu F et al (2012) Growth and characterization of CuSbSe2 thin films prepared by electrodeposition. Electrochim Acta 76:480–486. https://doi.org/10.1016/j.electacta.2012.05.066

    Article  CAS  Google Scholar 

  5. Makin F, Alam F, Buckingham MA, Lewis DJ (2022) Synthesis of ternary copper antimony sulfide via solventless thermolysis or aerosol assisted chemical vapour deposition using metal dithiocarbamates. Sci Rep 12:1–13. https://doi.org/10.1038/s41598-022-08822-9

    Article  CAS  Google Scholar 

  6. Ramasamy K, Sims H, Butler WH, Gupta A (2014) Mono-, few-, and multiple layers of copper antimony sulfide (CuSbS2): a ternary layered sulfide. J Am Chem Soc 136:1587–1598. https://doi.org/10.1021/ja411748g

    Article  CAS  PubMed  Google Scholar 

  7. Wang W, Li L, Zhang Z et al (2017) Ultrathin GaGeTe p-type transistors. Appl Phys Lett 111:1–4. https://doi.org/10.1063/1.4998350

    Article  CAS  Google Scholar 

  8. Ma M, Zhang J, Zhang Y et al (2020) Ternary chalcogenide Ta2NiS5nanosheets for broadband pulse generation in ultrafast fiber lasers. Nanophotonics 9:2341–2349. https://doi.org/10.1515/nanoph-2019-0350

    Article  CAS  Google Scholar 

  9. El-Bana MS, El Radaf IM (2022) Exploring the amorphous optical nature of CuSbSe2 thin films, and investigating a promising photovoltaic ITO/ CdS/ CSS2/Au heterojunction. Phys B Condens Matter 632:413705. https://doi.org/10.1016/j.physb.2022.413705

  10. Aydın ZY, Malekghasemi S, Abaci S (2019) Underpotential co-deposition of ternary Cu-Te-Se semiconductor nanofilm on both flexible and rigid substrates. Appl Surf Sci 470:658–667. https://doi.org/10.1016/j.apsusc.2018.11.110

    Article  CAS  Google Scholar 

  11. Sharaf KA, Abdelmohsen N, Naser S, Abou El-Ela AH (1991) Thermal conductivity of CuSbTe and CuBiTe2 semiconductors in solid and liquid states. Acta Phys Hungarica 70:51–56. https://doi.org/10.1007/BF03054210

    Article  CAS  Google Scholar 

  12. Soliman LI, Abo El Soad AM, Zayed HA, El Ghfar SA (2002) Structural and electrical properties of CuSbTe2, CuSbSe2 and CuSbS2 chalcogenide this films. Fiz A 11:139–152

    CAS  Google Scholar 

  13. Yan S, Cai D, Xue Y et al (2019) Sb-rich CuSbTe material: A candidate for high-speed and high-density phase change memory application. Mater Sci Semicond Process 103:104625. https://doi.org/10.1016/J.MSSP.2019.104625

  14. He W, Li N, Wang H et al (2021) Multiple effects promoting the thermoelectric performance of SnTe by alloying with CuSbTeand CuBiTe2. ACS Appl Mater Interfaces 13:52775–52782. https://doi.org/10.1021/acsami.1c15614

    Article  CAS  Google Scholar 

  15. Gao T, Zhang Q, Li L et al (2018) 2D ternary chalcogenides. Adv Opt Mater 6:1–16. https://doi.org/10.1002/adom.201800058

    Article  CAS  Google Scholar 

  16. Mak KF, Shan J (2016) Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10:216–226. https://doi.org/10.1038/nphoton.2015.282

    Article  CAS  Google Scholar 

  17. Panicker MPR (1978) Cathodic Deposition of CdTe from aqueous electrolytes. J Electrochem Soc 125:566. https://doi.org/10.1149/1.2131499

    Article  CAS  Google Scholar 

  18. Tomkiewicz M, Ling I, Parsons WS (2016) in Liquid Junction Solar Cells o9 I. 2016–2022

  19. Israelachvili J, Adams G (1976) © 1976 Nature Publishing Group. Nature 262:774–776

    Article  CAS  Google Scholar 

  20. Şişman I, Demir Ü (2011) Electrochemical growth and characterization of size-quantized CdTe thin films grown by underpotential deposition. J Electroanal Chem 651:222–227. https://doi.org/10.1016/j.jelechem.2010.12.005

    Article  CAS  Google Scholar 

  21. Şişman İ, Biçer M (2011) Structural, morphological and optical properties of Bi2−xSbxSe3 thin films grown by electrodeposition. J Alloys Compd 509:1538–1543. https://doi.org/10.1016/j.jallcom.2010.10.165

    Article  CAS  Google Scholar 

  22. Biçer M, Şişman I (2011) Electrodeposition and growth mechanism of SnSe thin films. Appl Surf Sci 257:2944–2949. https://doi.org/10.1016/j.apsusc.2010.10.096

    Article  CAS  Google Scholar 

  23. Aydın ZY, Abacı S (2017) Synthesis and characterization of Cu3Se2 nanofilms by an underpotential deposition based electrochemical codeposition technique. Solid State Sci 74:74–87. https://doi.org/10.1016/j.solidstatesciences.2017.10.011

  24. Erdoğan İY, Demir Ü (2010) One-step electrochemical preparation of the ternary (BixSb1−x)2Te3 thin films on Au(111): composition-dependent growth and characterization studies. Electrochim Acta 55:6402–6407. https://doi.org/10.1016/j.electacta.2010.06.051

    Article  CAS  Google Scholar 

  25. Köse H, Biçer M, Tütünoğlu Ç et al (2009) The underpotential deposition of Bi2Te3−ySey thin films by an electrochemical co-deposition method. Electrochim Acta 54:1680–1686. https://doi.org/10.1016/j.electacta.2008.09.059

    Article  CAS  Google Scholar 

  26. Murase K, Watanabe H, Mori S et al (1999) Control of composition and conduction type of CdTe film electrodeposited from ammonia alkaline aqueous solutions. J Electrochem Soc 146:4477–4484

    Article  CAS  Google Scholar 

  27. Aydın ZY, Abacı S (2017) Characterization of CuTe nanofilms grown by underpotential deposition based on an electrochemical codeposition technique. J Solid State Electrochem. https://doi.org/10.1007/s10008-016-3496-9

    Article  Google Scholar 

  28. Kiani A, Fard EN (2009) Fabrication of palladium coated nanoporous gold film electrode via underpotential deposition and spontaneous metal replacement: A low palladium loading electrode with electrocatalytic activity. Electrochim Acta 54:7254–7259. https://doi.org/10.1016/j.electacta.2009.07.037

    Article  CAS  Google Scholar 

  29. Misicak D, Ruthenburg TC, Fawcett WR (2010) Copper deposition and its replacement by platinum on a gold electrode. Electrochim Acta 55:7610–7614. https://doi.org/10.1016/j.electacta.2010.04.012

    Article  CAS  Google Scholar 

  30. Filella M, Belzile N, Lett M-C (2007) Antimony in the environment: a review focused on natural waters. III Microbiota relevant interactions Earth-Science Rev 80:195–217. https://doi.org/10.1016/j.earscirev.2006.09.003

    Article  CAS  Google Scholar 

  31. Zan L, Xing D, Abd-El-Latif AA, Baltruschat H (2019) Antimony deposition onto Au(111) and insertion of Mg. Beilstein J Nanotechnol 10245(10):2541–2552. https://doi.org/10.3762/BJNANO.10.245

    Article  Google Scholar 

  32. Yang JY, Zhu W, Gao XH et al (2007) Electrochemical aspects of depositing Sb2Te3 compound on Au substrate by ECALE. Electrochim Acta 52:3035–3039. https://doi.org/10.1016/j.electacta.2006.09.045

    Article  CAS  Google Scholar 

  33. Haidar F, Pradel A, Chen Y, Record MC (2020) Deposition of Sb2Se3 thin films on Pt substrate via electro-chemical atomic layer epitaxy (EC-ALE). J Electroanal Chem 879:114774. https://doi.org/10.1016/j.jelechem.2020.114774

  34. Yang J, Zhu W, Gao X et al (2006) Formation and characterization of Sb2Te3 nanofilms on Pt by electrochemical atomic layer epitaxy. J Phys Chem B 110:4599–4604. https://doi.org/10.1021/jp0565498

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Wang L, Pradel A et al (2015) Underpotential deposition of selenium and antimony on gold. J Solid State Electrochem 19:2399–2411. https://doi.org/10.1007/s10008-015-2881-0

    Article  CAS  Google Scholar 

  36. Erdoǧan IY, Demir Ü (2009) Synthesis and characterization of Sb2Te3nanofilms via electrochemical co-deposition method. J Electroanal Chem 633:253–258. https://doi.org/10.1016/j.jelechem.2009.06.010

    Article  CAS  Google Scholar 

  37. Zhu W, Yang JY, Gao XH et al (2005) The underpotential deposition of bismuth and tellurium on cold rolled silver substrate by ECALE. Electrochim Acta 50:5465–5472. https://doi.org/10.1016/j.electacta.2005.03.028

    Article  CAS  Google Scholar 

  38. Zhu W, Yang JY, Zhou DX et al (2007) Electrochemical characterization of the underpotential deposition of tellurium on Au electrode. Electrochim Acta 52:3660–3666. https://doi.org/10.1016/j.electacta.2006.10.028

    Article  CAS  Google Scholar 

  39. Bhattacharya S, Ghatak KP (2008) Effective electron mass in low-dimensional semiconductors. Springer Vienna

  40. Vaidyanathan R, Stickney JL, Cox SM et al (2003) Formation of In2Se3 thin films and nanostructures using electrochemical atomic layer epitaxy. J Electroanal Chem 559:55–61. https://doi.org/10.1016/S0022-0728(03)00053-6

    Article  CAS  Google Scholar 

  41. Jathar SB, Rondiya SR, Jadhav YA et al (2021) Ternary Cu2SnS3: synthesis, structure, photoelectrochemical activity, and heterojunction band offset and alignment. Chem Mater 33:1983–1993. https://doi.org/10.1021/acs.chemmater.0c03223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morgan DJ (2017) Metallic antimony (Sb) by XPS. Surf Sci Spectra 24:024004. https://doi.org/10.1116/1.4994636

  43. King MO, McLeod IM, Hesp D et al (2014) The templated growth of a chiral transition metal chalcogenide. Surf Sci 629:94–101. https://doi.org/10.1016/j.susc.2014.02.008

    Article  CAS  Google Scholar 

  44. Lincheneau C, Amelia M, Oszajca M et al (2014) Synthesis and properties of ZnTe and ZnTe/ZnS core/shell semiconductor nanocrystals. J Mater Chem C 2:2877. https://doi.org/10.1039/c3tc32385d

    Article  CAS  Google Scholar 

  45. Olvera-Felix C, Ramirez-Bon R, Ochoa-Landín R et al (2020) Optical and structural characterization of CdTe nanoparticles synthesized using chemical bath deposition technique. J Electron Mater 49:1257–1265. https://doi.org/10.1007/s11664-019-07719-0

    Article  CAS  Google Scholar 

  46. Shi W, Zhou L, Song S et al (2008) Hydrothermal synthesis and thermoelectric transport properties of impurity-free antimony telluride hexagonal nanoplates. Adv Mater 20:1892–1897. https://doi.org/10.1002/adma.200702003

    Article  CAS  Google Scholar 

  47. Hemasiri BWNH, Kim JK (2017) Lee JM (2017) Fabrication of highly conductive graphene/ITO transparent bi-film through CVD and organic additives-free sol-gel techniques. Sci Reports 71(7):1–12. https://doi.org/10.1038/s41598-017-18063-w

    Article  CAS  Google Scholar 

  48. Baranova VR, Pinsker ZG (1964) Study of the copper-tellurium system in thin films. Sov Crystallogr 9:83–85

    Google Scholar 

  49. Soliman LI, Abo El Soad AM, Zayed HA, El Ghfar SA (2002) Structural and electrical properties of CuSbTe/sub 2/, CuSbSe/sub 2/ and CuSbS/sub 2/ chalcogenide this films. Fiz A 11:139–152

    CAS  Google Scholar 

  50. Xiao C, Yang J, Zhu W et al (2009) Electrodeposition and characterization of Bi2Se3 thin films by electrochemical atomic layer epitaxy (ECALE). Electrochim Acta 54:6821–6826. https://doi.org/10.1016/j.electacta.2009.06.089

    Article  CAS  Google Scholar 

  51. He W, Zhang H, Zhang Y et al (2015) Electrodeposition and characterization of CuTe and Cu2Te Thin Films. J Nanomater 2015:1–5. https://doi.org/10.1155/2015/240525

    Article  CAS  Google Scholar 

  52. Dutková E, Sayagués MJ, Fabián M et al (2021) Mechanochemical synthesis of ternary chalcogenide chalcostibite CuSbS2 and its characterization. J Mater Sci Mater Electron 32:22898–22909. https://doi.org/10.1007/s10854-021-06767-9

    Article  CAS  Google Scholar 

  53. Das AK, Karan SK, Khatua BB (2015) High energy density ternary composite electrode material based on polyaniline (PANI), molybdenum trioxide (MoO3) and graphene nanoplatelets (GNP) prepared by sono-chemical method and their synergistic contributions in superior supercapacitive performance. Electrochim Acta 180:1–15. https://doi.org/10.1016/j.electacta.2015.08.029

    Article  CAS  Google Scholar 

  54. Duan L, Yi H, Xu C et al (2018) Relationship between the diode ideality factor and the carrier recombination resistance in organic solar cells. IEEE J Photovoltaics 8:1701–1709. https://doi.org/10.1109/JPHOTOV.2018.2870722

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of this work under ID number FBA-2018-17052 by Research Council of Hacettepe University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Abaci.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 116 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaman, Y.T., Bolat, G., Aydin, Z.Y. et al. Fabrication of ternary Cu-Sb-Te thin films by electrochemical co-deposition strategy at one-stage process. J Solid State Electrochem 27, 2761–2770 (2023). https://doi.org/10.1007/s10008-023-05575-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05575-x

Keywords

Navigation