Skip to main content
Log in

Electrochemical corrosion evaluation of a steel–concrete system with surface treatment of silicon nanoparticles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this research, the contribution of silicon-based nanoparticles (NP) applied superficially on steel–concrete systems, for the passive film improvement was studied. The steel–concrete system was evaluated by electrochemical behavior and durability (physical and chemical properties) generated after such treatment. Corrosion current density (icorr), electrochemical double-layer capacitance (Cdl), coefficient of Warburg impedance (σw), film resistance (Rfilm), and total pore volume were some of the indicators to assess the contribution of NP on the passivity behavior of steels. The systems were fabricated with AISI 1018 carbon steel (CS), and AISI 1018 galvanized steel (GS) embedded in concrete. The water/cement ratio of 0.45 after concrete cured in a dispersion of NP for 24, 48, and 168 h were obtained. The results show that after 48 h of treatment the total pore volume decreases, attributed to reduction of pore interconnection, which was confirmed by the increase in electrical resistivity. Likewise, icorr, Rfilm, and Cdl results supported the passive film enhancement in both steels, which allows to decrease the oxygen on the metal surface, confirmed by σw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hu J, Deng P, Li X et al (2018) The vertical Non-uniform corrosion of reinforced concrete exposed to the marine environments. Constr Build Mater 183:180–188. https://doi.org/10.1016/j.conbuildmat.2018.06.015

    Article  CAS  Google Scholar 

  2. Sohail MG, Kahraman R, Alnuaimi NA et al (2020) Electrochemical behavior of mild and corrosion resistant concrete reinforcing steels. Constr Build Mater 232:117205. https://doi.org/10.1016/j.conbuildmat.2019.117205

  3. Koch G (2017) Cost of corrosion. In: Trends Oil Gas Corros. Res Technol Prod Transm. https://doi.org/10.1016/B978-0-08-101105-8.00001-2

  4. James A, Bazarchi E, Chiniforush AA et al (2019) Rebar corrosion detection, protection, and rehabilitation of reinforced concrete structures in coastal environments: a review. Constr Build Mater 224:1026–1039. https://doi.org/10.1016/j.conbuildmat.2019.07.250

    Article  Google Scholar 

  5. Bank W (2021) World development indicators. https://databank.worldbank.org

  6. Williamson J, Isgor OB (2016) The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar. Corros Sci 106:82–95. https://doi.org/10.1016/j.corsci.2016.01.027

    Article  CAS  Google Scholar 

  7. Rivera-Corral JO, Fajardo G, Arliguie G et al (2017) Corrosion behavior of steel reinforcement bars embedded in concrete exposed to chlorides: effect of surface finish. Constr Build Mater 147:815–826. https://doi.org/10.1016/j.conbuildmat.2017.04.186

    Article  CAS  Google Scholar 

  8. Fajardo G, Cruz-López A, Cruz-Moreno D et al (2015) Innovative application of silicon nanoparticles (SN): improvement of the barrier effect in hardened Portland cement-based materials. Constr Build Mater 76:158–167. https://doi.org/10.1016/j.conbuildmat.2014.11.054

    Article  Google Scholar 

  9. Cruz-Moreno D, Fajardo G, Flores-Vivian I et al (2020) Multifunctional surfaces of portland cement-based materials developed with functionalized silicon-based nanoparticles. Appl Surf Sci 531:147355. https://doi.org/10.1016/j.apsusc.2020.147355

  10. Castro-Borges P, Balancán-Zapata M, Zozaya-Ortiz A (2017) Electrochemical meaning of cumulative corrosion rate for reinforced concrete in a tropical natural marine environment. Adv Mater Sci Eng. https://doi.org/10.1155/2017/6973605

  11. Ribeiro DV, Abrantes JCC (2016) Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach. Constr Build Mater 111:98–104. https://doi.org/10.1016/j.conbuildmat.2016.02.047

    Article  CAS  Google Scholar 

  12. Sánchez-Moreno M, Takenouti H, García-Jareño JJ et al (2009) A theoretical approach of impedance spectroscopy during the passivation of steel in alkaline media. Electrochim Acta 54:7222–7226. https://doi.org/10.1016/j.electacta.2009.07.013

    Article  CAS  Google Scholar 

  13. Pokorný P, Tej P, Kouřil M (2017) Evaluation of the impact of corrosion of hot-dip galvanized reinforcement on bond strength with concrete – a review. Constr Build Mater 132:271–289. https://doi.org/10.1016/j.conbuildmat.2016.11.096

    Article  CAS  Google Scholar 

  14. Tittarelli F, Bellezze T (2010) Investigation of the major reduction reaction occurring during the passivation of galvanized steel rebars. Corros Sci 52:978–983. https://doi.org/10.1016/j.corsci.2009.11.021

    Article  CAS  Google Scholar 

  15. Padilla V, Alfantazi A (2014) Corrosion film breakdown of galvanized steel in sulphate-chloride solutions. Constr Build Mater 66:447–457. https://doi.org/10.1016/j.conbuildmat.2014.05.053

    Article  Google Scholar 

  16. Zheng H, Dai JG, Poon CS, Li W (2018) Influence of calcium ion in concrete pore solution on the passivation of galvanized steel bars. Cem Concr Res 108:46–58. https://doi.org/10.1016/j.cemconres.2018.03.001

    Article  CAS  Google Scholar 

  17. Norhasri MSM, Hamidah MS, Fadzil AM (2017) Applications of using nano material in concrete: a review. Constr Build Mater 133:91–97. https://doi.org/10.1016/j.conbuildmat.2016.12.005

    Article  CAS  Google Scholar 

  18. Khaloo A, Mobini MH, Hosseini P (2016) Influence of different types of nano-SiO2 particles on properties of high-performance concrete. Constr Build Mater 113:188–201. https://doi.org/10.1016/j.conbuildmat.2016.03.041

    Article  CAS  Google Scholar 

  19. Ji T (2005) Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem Concr Res 35:1943–1947. https://doi.org/10.1016/j.cemconres.2005.07.004

    Article  CAS  Google Scholar 

  20. Sánchez M, Alonso MC, González R (2014) Preliminary attempt of hardened mortar sealing by colloidal nanosilica migration. Constr Build Mater 66:306–312. https://doi.org/10.1016/j.conbuildmat.2014.05.040

    Article  Google Scholar 

  21. Zapata LE, Portela G, Suárez OM, Carrasquillo O (2013) Rheological performance and compressive strength of superplasticized cementitious mixtures with micro/nano-SiO 2 additions. Constr Build Mater 41:708–716. https://doi.org/10.1016/j.conbuildmat.2012.12.025

    Article  Google Scholar 

  22. Pan X, Shi Z, Shi C et al (2017) A review on concrete surface treatment Part I: Types and mechanisms. Constr Build Mater 132:578–590. https://doi.org/10.1016/j.conbuildmat.2016.12.025

    Article  CAS  Google Scholar 

  23. Pan X, Shi Z, Shi C et al (2017) A review on surface treatment for concrete – Part 2: Performance. Constr Build Mater 133:81–90. https://doi.org/10.1016/j.conbuildmat.2016.11.128

    Article  CAS  Google Scholar 

  24. Cruz Moreno D M, Fajardo San Miguel, Flores Vivián I et al (2017) Tratamiento superficial con nanopartículas base silicio inducido durante el curado: efecto en la durabilidad de materiales base cemento portland. Rev ALCONPAT 7:274. https://doi.org/10.21041/ra.v7i3.239

  25. Vaca-Arciga L, Fajardo-San Miguel G, Cruz-Moreno D et al (2019) Uso De Nano-Sio2 Como Tratamiento Superficial De Mantenimiento Preventivo En Estructuras De Concreto Envejecido. 3:274–285. https://doi.org/10.21041/conpat2019/v2pat216

  26. Stern M, Geary AL (1957) Electrochemical polarization: I. A Theoretical analysis of the shape of polarization curves. J Electrochem Soc 104:56–63. https://doi.org/10.1149/1.2428496

    Article  CAS  Google Scholar 

  27. Otieno M, Beushausen H, Alexander M (2016) Chloride-induced corrosion of steel in cracked concrete - Part I: Experimental studies under accelerated and natural marine environments. Cem Concr Res 79:373–385. https://doi.org/10.1016/j.cemconres.2015.08.009

    Article  CAS  Google Scholar 

  28. Fajardo G, Valdez P, Pacheco J (2009) Corrosion of steel rebar embedded in natural pozzolan based mortars exposed to chlorides. Constr Build Mater 23:768–774. https://doi.org/10.1016/j.conbuildmat.2008.02.023

    Article  Google Scholar 

  29. Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem 176:275–295. https://doi.org/10.1016/S0022-0728(84)80324-1

    Article  CAS  Google Scholar 

  30. Tribollet B (2013) Analysis of Constant Phase Element. 223rd ECS Meet 1:75252

  31. Vedalakshmi R, Saraswathy V, Song HW, Palaniswamy N (2009) Determination of diffusion coefficient of chloride in concrete using Warburg diffusion coefficient. Corros Sci 51:1299–1307. https://doi.org/10.1016/j.corsci.2009.03.017

    Article  CAS  Google Scholar 

  32. Jo BW, Kim CH, Tae GH, Park JB (2007) Characteristics of cement mortar with nano-SiO2 particles. Constr Build Mater 21:1351–1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020

    Article  Google Scholar 

  33. Gónzalez-Hernández J, Pérez-Robles JF, Ruiz F, Martínez JR (2000) Vidrios SiO2 nanocompuestos preparados por sol-gel: revisión. Superf y vacío 1–16

  34. Musić S, Filipović-Vinceković N, Sekovanić L (2011) Precipitation of amorphous SiO2 particles and their properties. Brazilian J Chem Eng 28:89–94. https://doi.org/10.1590/S0104-66322011000100011

    Article  Google Scholar 

  35. Jafari V, Allahverdi A, Vafaei M (2014) Ultrasound-assisted synthesis of colloidal nanosilica from silica fume: effect of sonication time on the properties of product. Adv Powder Technol 25:1571–1577. https://doi.org/10.1016/j.apt.2014.05.011

    Article  CAS  Google Scholar 

  36. Trocónis de Rincón O, Romero de Carruyo A, Andrade C et al (2000) Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado, 3ra. CYTED, Maracaibo, Venezuela

  37. Faraldos M, Goberna C (2011) Técnicas de análisis y caracterización de materiales., 2da. DiScript Preimpresión, S. L., Madrid, España

  38. Marchon D, Flatt RJ (2016) Mechanisms of cement hydration. Elsevier Ltd

  39. Van Damme H, Pellenq RJM, Ulm FJ (2013) Cement hydrates, 2nd ed. Elsevier Ltd

  40. Landa-Gómez AE, Fajardo-San Miguel G, Orozco-Cruz R, Galván-Martínez R (2019) Evaluation of corrosion in reinforced concrete during the curing stage, treated superficially with nanoparticles. ECS Trans 94:365–374. https://doi.org/10.1149/09401.0365ecst

    Article  CAS  Google Scholar 

  41. Andrade C, Alonso C (1996) Corrosion rate monitoring in the laboratory and on-site. Constr Build Mater 10:315–328. https://doi.org/10.1016/0950-0618(95)00044-5

  42. Tan ZQ, Hansson CM (2008) Effect of surface condition on the initial corrosion of galvanized reinforcing steel embedded in concrete. Corros Sci 50:2512–2522. https://doi.org/10.1016/j.corsci.2008.06.035

    Article  CAS  Google Scholar 

  43. de Oliveira AM, Cascudo O (2018) Effect of mineral additions incorporated in concrete on thermodynamic and kinetic parameters of chloride-induced reinforcement corrosion. Constr Build Mater 192:467–477. https://doi.org/10.1016/j.conbuildmat.2018.10.100

    Article  CAS  Google Scholar 

  44. Zheng H, Dai JG, Li W, Poon CS (2018) Influence of chloride ion on depassivation of passive film on galvanized steel bars in concrete pore solution. Constr Build Mater 166:572–580. https://doi.org/10.1016/j.conbuildmat.2018.01.174

    Article  CAS  Google Scholar 

  45. Andrade C, Feliu S (1989) Manual de inspección de obras dañadas por corrosión de armaduras. ICCT, Madrid, España

  46. Popov BN (2015) Corrosion of Structural Concrete

  47. Ahmad Z (2006) Concrete corrosion. In: Principles of corrosion engineering and corrosion control. Butterworth-Heinemann, pp 609–646

  48. Joiret S, Keddam M, Nóvoa XR et al (2002) Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH. Cem Concr Compos 24:7–15. https://doi.org/10.1016/S0958-9465(01)00022-1

    Article  CAS  Google Scholar 

  49. Andrade C, Alonso C (2004) Electrochemical aspects of galvanized reinforcement corrosion. Galvaniz Steel Reinf Concr 111–144. https://doi.org/10.1016/B978-008044511-3/50020-7

  50. Sobhani J, Najimi M (2013) Electrochemical impedance behavior and transport properties of silica fume contained concrete. Constr Build Mater 47:910–918. https://doi.org/10.1016/j.conbuildmat.2013.05.010

    Article  Google Scholar 

  51. Vedalakshmi R, Palaniswamy N (2010) Analysis of the electrochemical phenomenon at the rebar-concrete interface using the electrochemical impedance spectroscopic technique. Mag Concr Res 62:177–189. https://doi.org/10.1680/macr.2010.62.3.177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to National Council for Science and Technology (CONACYT), The Laboratory of Research and Innovation in Construction Materials of the Civil Engineering Faculty of the Nuevo León Autonomous University and the Doctorate Program of Materials and Nanoscience of MICRONA Center of the Veracruzana University for the financial and technical support to A. E. Landa-Gómez for the realization of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Galván-Martínez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Surface treatments with NS could revolutionize the concrete industry.

• The treatments contributed to the improvement of the passive film of CS and GS.

• The NS promoted a decrease in the pore volume of the concrete.

• Rct and Cdl of CS and GS are enhanced by surface treatments.

• The treatments contribute to reduce corrosion in steel-concrete systems.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landa-Gómez, A.E., Fajardo, G., Orozco-Cruz, R. et al. Electrochemical corrosion evaluation of a steel–concrete system with surface treatment of silicon nanoparticles. J Solid State Electrochem 27, 3049–3065 (2023). https://doi.org/10.1007/s10008-023-05536-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05536-4

Keywords

Navigation