Skip to main content
Log in

Promotion of catalytic activity of Pt@Al-Ti doped ZnO nanostructured anodes for direct methanol fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Different nanostructured anode electrocatalyst using Pt, Al, Ti, ZnO, and carbon cloth (CC) including Pt@CC, Pt@ZnO-CC, Pt@Al-ZnO-CC, Pt@Ti-ZnO-CC, and Pt@Al-Ti-ZnO-CC are prepared for the purpose of application in direct methanol fuel cells (DMFCs). The effect of carbonaceous material modification and co-doping (Al/Ti) utilization in electrodes is investigated for methanol oxidation reaction (MOR). The results show that the incorporation of Al, Ti, and Pt nanoparticles into ZnO does not damage the hexagonal wurtzite structure. The doping ZnO with Al and Ti nanoparticles improves the dispersion of Pt catalysts and increases the current density by 1.6 times compare with Pt@CC electrode. Maximum electrochemical surface area of 98.6 m2 g−1, minimum amount of charge transfer resistance of 14 Ω cm2, and good CO tolerance and stability are found in Pt@Al-Ti-ZnO-CC electrode. This electrode in the active DMFC shows the maximum power and current density of 15.1 mW cm−2 and 83.4 mA cm−2, respectively, in the cell voltage of 0.2 V. In the EIS test, charge transfer resistance at the anode and cathode (Rct,a and Rct,c) values is decreased by 11.6 and 26.6% by reducing the cell voltage from 0.3 to 0.2 V, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ATZO:

Aluminum titanium-doped zinc oxide

CB:

Conduction band

CC:

Carbon cloth

CO:

Carbon monoxide

COads :

Adsorbed carbon monoxide

CV:

Cyclic voltammetry

DI:

Deionized

DMFC:

Direct methanol fuel cell

ECSA:

Electro chemical surface area

EDX:

Energy dispersive X-ray analysis

EIS:

Electrochemical impedance spectroscopy

Hupd :

Hydrogen under potential deposition

MCO:

Methanol crossover

MEA:

Membrane electrode assembly

MOR:

Methanol oxidation reaction

ORR:

Oxygen reduction reaction

SEM:

Scanning electron microscopy

TCO:

Transparent conducting oxide

VB:

Valence band

VO:

Oxygen vacancy

XRD:

X-ray diffraction

\(\delta\) :

Poisoning rate/% per second

CPE-a:

Double layer capacitance at the anode/mF cm2

CPE-c:

Double layer capacitance at the cathode/mF cm2

C dl :

Double layer capacitance/µF cm2

E p :

Peak potential/V

\(i_{0}\) :

Current obtained by the extrapolating the linear current decay/mA cm2

I f :

Current density of forwarding peak/mA cm2

I r :

Current density of reverse peak/mA cm2

\(L_{Pt}\) :

Pt loading/gPt m2

\(Q_{H}\) :

Coulombic charge for hydrogen adsorption on the Pt sites/µC cm2

R ct :

Charge transfer resistance/Ω cm2

R ct,a :

Charge transfer resistance at the anode/Ω cm2

R ct,c :

Charge transfer resistance at the cathode/Ω cm2

R ohm :

Bulk resistance/Ω cm2

R s :

Solution resistance/Ω cm2

Z w :

Warburg impedance/Ω cm2

\(\left( {{{di} \mathord{\left/ {\vphantom {{di} {dt}}} \right. \kern-0pt} {dt}}} \right)_{t\rangle 200s}\) :

Linear current slope at \(t > 200\,s\)/mA cm2 s1

References

  1. Ho VTT, Pham HQ, Anh THT, Nguyen AV, Quoc KAN, Vo HTH, Nguyen TT (2019) Highly stable Pt/ITO catalyst as a promising electrocatalyst for direct methanol fuel cells. C R Chimie 22:838–843

    Article  CAS  Google Scholar 

  2. Nguyen AKQ, Huynh TT, Ho VTT (2016) Highly stable Pt/ITO catalyst as a promising electrocatalyst for direct methanol fuel cells. Mol Cryst Liq Cryst 635:32–39

    Article  CAS  Google Scholar 

  3. Yavari Z, Noroozifar M, Khorasani-M M (2016) The improvement of methanol oxidation using nano-electrocatalysts. J Exp Nanosci 11:798–815

  4. Berghian-GC RT, Biris AR, Dan M, Voica C, Watanabe F (2020) Platinum nanoparticles coated by graphene layers: a low-metal loading catalyst for methanol oxidation in alkaline media. J Energy Chem 40:81–88

    Article  Google Scholar 

  5. Li J, Zhao L, Li X, Hao S, Wang Z (2020) Fabrication of C@MoTi1-O2-δnanocrystalline with functionalized interface as efficient and robust PtRu catalyst support for methanol electrooxidation. J Energy Chem 40:7–14

    Article  Google Scholar 

  6. Jafarova VN, Orudzhev GS (2021) Structural and electronic properties of ZnO: a first-principles density-functional theory study within LDA(GGA) and LDA(GGA) + U methods. Solid State Commun 325:114166

    Article  CAS  Google Scholar 

  7. Patil SA, Jagdale PB, Singh A, Singh RV, Khan Z, Samal AK, Saxena M (2023) 2D zinc oxide–synthesis, methodologies, reaction mechanism, and applications. Small. https://doi.org/10.1002/smll.202206063

    Article  PubMed  Google Scholar 

  8. Davoodi A, Tajally M, Mirzaee O, Eshaghi A (2016) Fabrication and characterization of optical and electrical properties of Al-Ti Co-doped ZnO nano-structured thin film. J Alloy Compd 657:296–301

    Article  CAS  Google Scholar 

  9. Coguplugil KZ, Akin M, Bayat R, Bekmezci M, Karimi-Maleh H, Javadi A, Sen F (2022) Synthesis and characterization of Pt/ZnO@SWCNT/Fe3O4 as a powerful catalyst for anodic part of direct methanol fuel cell reaction. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.10.238

    Article  Google Scholar 

  10. Wang H, Wang X, Zheng J, Peng F, Yu H (2015) Enhanced activity and durability of nanosized Pt–SnO2/IrO2/CNTs catalyst for methanol electrooxidation. J Nanosci Nanotechnol 15:3662–3669

    Article  CAS  PubMed  Google Scholar 

  11. Tu Y, Chen S, Li X, Gorbaciova J, Gillin WP, Krause S, Briscoe J (2018) Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behavior. J Mater Chem C 6:1815–1821

    Article  CAS  Google Scholar 

  12. Nowicka E, n Althahban SM, Luo Y, Kriegel R, Shaw G, Morgan DJ, He Q, Watanabe M, Armbrüster M, Kiely CJ, Hutchings GJ (2018) Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction. Catal Sci Technol 8:5848–5857

    Article  CAS  Google Scholar 

  13. Liu L, Mei Z, Tang A, Azarov A, Kuznetsov A, Xue Q-K, Du X (2016) Oxygen vacancies: the origin of n-type conductivity in ZnO. APS Phys 93:235305

    Google Scholar 

  14. Hussain B, Ebong A, Ferguson I (2015) Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell. Sol Energy Mater Sol Cells 139:95–100

    Article  CAS  Google Scholar 

  15. Pietruszka R, Schifano R, Krajewski TA, Witkowski BS, Kopalko K, Wachnicki L, Zielony E, Gwozdz K, Bieganski P, Placzek-Popko E, Godlewski M (2016) Improved efficiency of n-ZnO/p-Si based photovoltaic cells by band offset engineering. Sol Energy Mater Sol Cells 147:164–170

    Article  CAS  Google Scholar 

  16. Mahdi MA, Yousefi SR, Jasim LS, Salavati-Niasari M (2022) Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int J Hydrogen Energy 47:14319–14330

    Article  CAS  Google Scholar 

  17. Qiao Z, Xia C, Cai Y, Afzal M, Wang H, Qiao J, Zhu B (2018) Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. J Power Sources 392:33–40

    Article  CAS  Google Scholar 

  18. Xia C, Mi Y, Wang B, Lin B, Chen G, Zhu B (2019) Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nat Commun 10:1707

  19. Yousefi SR, Ghanbari M, Amiri O, Marzhoseyni Z, Mehdizadeh P, Hajizadeh-Oghaz M, Salavati-Niasari M (2021) Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunctionnanocomposite with enhanced photocatalytic and antibacterial activities. J Am Ceram Soc 104:2952–2965

    Article  CAS  Google Scholar 

  20. Yousefi SR, Alshamsi HA, Amiri O, Salavati-Niasari M (2021) Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J Mol Liq 337:116405

    Article  CAS  Google Scholar 

  21. Yousaf SM, Mushtaq MN, Rauf S, Xia C, Zhu B (2019) The semiconductor SrFe0.2Ti0.8O3-δ-ZnO heterostructure electrolyte fuel cells. Int J Hydrogen Energy 44:30319–30327

    Article  Google Scholar 

  22. Mukhamedshina D, Mit K, Chuchvaga N, Tokmoldin N (2017) Fabrication and study of sol-gel ZnO films for use in Si-based heterojunction photovoltaic devices. MoEM 3:158–161

    Article  Google Scholar 

  23. Thauer E, Zakharova GS, Andreikov EI, Adam V, Wegener SA, Nölke J-H, Singer L, Ottmann A, Asyuda A, Zharnikov M, Kiselkov DM, Zhu Q, Puzyrev IS, Podval’naya NV, Klingeler R (2021) Novel synthesis and electrochemical investigations of ZnO/C composites for lithium-ion batteries. J Mater Sci 56:13227–13242

    Article  CAS  Google Scholar 

  24. Yousefi SR, Amiri O, Salavati-Niasari M (2019) Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason Sonochem 58:104619

  25. Yousefi SR, Masjedi-Arani M, Sadat Morassaei M, Salavati-Niasari M, Moayedi H (2019) Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int J Hydrogen Energy 44:24005–24016

    Article  CAS  Google Scholar 

  26. Huang R-H, Chiu T-W, Lin T-J, Sun C-H, Chao W-K, Hsueh K-L, Shieu F-S, Tsai D-C (2013) Improvement of proton exchange membrane fuel cells performance by coating hygroscopic zinc oxide on the anodic catalyst layer. J Power Sources 227:229–236

    Article  CAS  Google Scholar 

  27. Yousefi SR, Sobhani A, Salavati-Niasari M (2017) A new nanocompositesuperionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation. Adv Powder Technol 28:1258–1262

    Article  CAS  Google Scholar 

  28. Kim YS, Tai WP (2007) Electrical and optical properties of Al-doped ZnO thin films by sol-gel process. Appl Surf Sci 253:4911

    Article  CAS  Google Scholar 

  29. Hao XT, Tan LW, OngKS ZhuF (2006) High-performance low-temperature transparent conducting aluminum-doped ZnO thin films and applications. J Cryst Growth 287:44

    Article  CAS  Google Scholar 

  30. Saito K, Hiratsuka Y, Omata A, Makino H, Kishimoto S, Yamamoto T, Horiuchi N, Hirayama H (2007) Atomic layer deposition and characterization of Ga-doped ZnO thin films. Superlattices Microstruct 42:172

    Article  CAS  Google Scholar 

  31. Mehdizadeh P, Jamdar M, Mahdi MA, Abdulsahib WK, Jasim LS, Yousefi SR, Salavati-Niasari M (2023) Rapid microwave fabrication of new nanocomposites based on Tb-Co-O nanostructures and their application as photocatalysts under UV/Visible light for removal of organic pollutants in water. Arab J Chem 16:104579

    Article  CAS  Google Scholar 

  32. Das D, Karmakar L (2020) Optimization of Si doping in ZnO thin films and fabrication of n-ZnO:Si/p-Si heterojunction solar cells. J Alloy Compd 824:153902

    Article  CAS  Google Scholar 

  33. Bian H, Ma S, Yang G, Zhu H, Xu X, Yan S, Gao J, Zhang Z (2016) The optical and electrical properties of ZnO: Zr films. J Alloy Compd 48:20–26

    Article  Google Scholar 

  34. Ye Z-Y, Lu H-L, Geng Y, Gu Y-Z, Xie Z-Y, Zhang Y, Sun Q-Q, Ding S-J, Zhang DW (2013) Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition. Nanoscale Res Lett 8:108

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hosseini J, Bodaghi A (2011) Preparation of palladium nanoparticles–titanium electrodes as a new anode for direct methanol fuel cells. J Solid State Electrochem 15:795–800

    Article  CAS  Google Scholar 

  36. Wang J, Xu J, Chen Z, Wang X (2023) Multi-dimensional Pt–Mo/Co@NC nanocomposites with low platinum contents for methanol oxidation. J Solid State Electrochem 27:327–336

    Article  CAS  Google Scholar 

  37. Jiang M, Hu Y, Zhang W, Wang L, Yang S, Liang J, Zhang Z, Zhang X, Jin Z (2021) Regulating the alloying degree and electronic structure of Pt–Au nanoparticles for high-efficiency direct C2+ alcohol fuel cells. Chem Mater 33:3767–3778

    Article  CAS  Google Scholar 

  38. Bocchese F, Cornil D, Haye E, Cornil J, Lucas S (2022) Three-zone model for Ti, Al co-doped ZnO films deposited by magnetron sputtering. Surf Interfaces 28:101595

    Article  CAS  Google Scholar 

  39. Lin J, Wu JN, Tseng CA, Peng KC (2013) Effect of direct current power to Ti-target on the composition, structure and characterization of the Ti (0–2.36 at. %), Al codoped ZnO sputtering thin films, Jpn J Appl Phys 52:01 AC06

  40. Lin J, Huang M, Wang T, Wu J, Tseng Y, Peng KC (2015) Structure and characterization of the sputtered ZnO, Al-doped ZnO, Ti-doped ZnO and Ti, Al-co-doped ZnO thin film. Mater Express 5:153–158

    Article  CAS  Google Scholar 

  41. Shimaa MA, Hamedh AAL (2017) Nano-structured sol-gel coatings as protective films against zinc corrosion in 0.5 M HCl solution. J Saudi Chem Soc 21:473–480

    Article  Google Scholar 

  42. Narayanasamy S, Jayaprakash J (2021) Carbon cloth/nickel cobaltite (NiCo2O4)/polyaniline (PANI) composite electrodes: preparation, characterization, and application in microbial fuel cells. Fuel 301:121016

    Article  CAS  Google Scholar 

  43. Amirinejad M, Rowshanzamir S, Eikani MH (2006) Effects of operating parameters on performance of a proton exchange membrane fuel cell. J Power Sources 161:872–875

    Article  CAS  Google Scholar 

  44. Taghiabadi MM, Zhiani M, Silva V (2019) Effect of MEA activation method on the long-term performance of PEM fuel cell. Appl Energy 242:602–611

    Article  CAS  Google Scholar 

  45. Gao Z, Yang W, Wang J, Song N, Li X (2015) Flexible all-solid-state hierarchical NiCo2O4/porous grapheme paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy 13:306–317

    Article  CAS  Google Scholar 

  46. Singh A, Vishwakarma HL (2015) Study of structural, morphological, optical and electroluminescent properties of undoped ZnO nanorods grown by a simple chemical precipitation. Mater Sci Pol 33:751–759

  47. Radicic R, Maletic D, Blažeka D, Car J, Krstulovi N (2022) Synthesis of silver, gold, and platinum doped zinc oxide nanoparticles by pulsed laser ablation in water. J Nanomater 12:3484

    Article  CAS  Google Scholar 

  48. Merati Z, BasiriParsa J (2018) Enhancement of the catalytic activity of Pt nanoparticles toward methanol electro-oxidation using doped-SnO2 supporting materials. Appl Surf Sci 435:535–542

    Article  CAS  Google Scholar 

  49. Dinesh B, Saraswathi R (2016) Enhanced performance of Pt and Pt-Ru supported PEDOT-RGO nanocomposite towards methanol oxidation. Int J Hydrogen Energy 41:13448–13458

    Article  CAS  Google Scholar 

  50. Peng K, Bhuvanendran N, Ravichandran S, Zhang W, Ma Q, Xu Q, Xing L, Khotseng L, Su H (2020) Bimetallic Pt3Mn nanowire network structures with enhanced electrocatalytic performance for methanol oxidation. Int J Hydrogen Energy 45:30455–30462

    Article  CAS  Google Scholar 

  51. Li M, Zhao S, Han G, Yang B (2009) Electrospinning-derived carbon fibrous mats improving the performance of commercial Pt/C for methanol oxidation. J Power Sources 191:351–356

    Article  CAS  Google Scholar 

  52. Merati Z, BasiriParsa J (2018) Electrochemically synthesized polypyrrole/MWCNTs-Al2O3 ternary nanocomposites supported Pt nanoparticles toward methanol oxidation. Int J Hydrogen Energy 43:20993–21005

    Article  CAS  Google Scholar 

  53. Yasmeen N, Rahman G, Mehmood M, Bilal S (2016) Electrooxidation of methanol at PANI/POAP bilayered structure modified platinum and graphite electrodes. Electrochim Acta 188:367–377

    Article  Google Scholar 

  54. Gharibi H, Amani M, Pahlavanzadeh H, Kazemeini M (2013) Investigation of carbon monoxide tolerance of platinum nanoparticles in the presence of optimum ratio of doped polyaniline with para toluene sulfonic acid and their utilization in a real passive methanol fuel cell. Electrochim Acta 97:216–225

    Article  CAS  Google Scholar 

  55. Baronla R, Goel J, Kaswan J, Shukla A, Singhal SK, Singh SP (2018) PtCo/rGO nano-anode catalyst: enhanced power density with reduced methanol crossover in direct methanol fuel cell. Mater Renew Sustain Energy 7:27

    Article  Google Scholar 

  56. Yuan W, Wang A, Yan Z, Tan Z, Tang Y, Xia H (2016) Visualization of two-phase flow and temperature characteristics of an active liquid-feed direct methanol fuel cell with diverse flow fields. Appl Energy 179:85–98

    Article  CAS  Google Scholar 

  57. Li H, Zhao H, Tao B, Xu G, Gu S, Wang G, Chang H (2022) Pt-based oxygen reduction reaction catalysts in proton exchange membrane fuel cells: controllable preparation and structural design of catalytic layer. J Nanomater 12:4173

    Article  CAS  Google Scholar 

  58. Zhang Z, Yang T, Li Y, Li J, Yang Q, Wang L, Jiang L, Su B (2022) Effects of expanded hemodialysis with medium cut-off membranes on maintenance hemodialysis patients: a review. Membranes 12:253

    Article  PubMed  PubMed Central  Google Scholar 

  59. Devrim Y, Erkan S, Bac N, Eroglu I (2012) Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique. Int J Hydrogen Energy 37:16748–16758

    Article  CAS  Google Scholar 

  60. Ercelik M, Ozden A, Seker E, Colpan CO (2017) Characterization and performance evaluation of Pt-Ru/C-TiO2 anode electrocatalyst for DMFC applications. Int J Hydrogen Energy 42:21518–21529

    Article  CAS  Google Scholar 

  61. Braz BA, OliveiraVB PAMFR (2020) Experimental evaluation of the effect of the anode diffusion layer properties on the performance of a passive direct methanol fuel cell. Energies 13:5198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Basiri Parsa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirinejad, S., Parsa, J.B. Promotion of catalytic activity of Pt@Al-Ti doped ZnO nanostructured anodes for direct methanol fuel cells. J Solid State Electrochem 27, 2347–2363 (2023). https://doi.org/10.1007/s10008-023-05491-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05491-0

Keywords

Navigation