Skip to main content

Advertisement

Log in

The influence of phosphonic acid pretreatment on the bronze corrosion protection by waterborne coating

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work examines the possibility of acrylic waterborne coating application in the protection of bronze cultural heritage. In order to enhance the coating protective properties, the surface pretreatment with long-chain phosphonic acid is investigated. Studies are conducted on bronze, either bare or covered by two types of patina, by using polarization measurements and electrochemical impedance spectroscopy during 3 weeks of continuous immersion in simulated urban acid rain solution. The role of 12-aminododecylphosphonic acid as corrosion inhibitor and adhesion promoter is studied. The results obtained within this research show that the corrosion protection by the waterborne coating increases in time in all cases and it is enhanced by the phosphonic acid pretreatment. The greatest impact of studied pretreatment on the overall corrosion protection level is observed on bare bronze substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rocca E, Mirambet F (2007) In: Dillmann P, Beranger G, Piccardo P, Matthiesen H (ed) Corrosion of metallic heritage artefacts, investigation, conservation and prediction for long-term behaviour. Woodhead Publishing, USA

  2. Artesani A, Di Turo F, Zucchelli M, Traviglia A (2020) Recent advances in protective coatings for cultural heritage-an overview. Coatings 10(3):1–37. https://doi.org/10.3390/coatings10030217

    Article  CAS  Google Scholar 

  3. Favaro M, Mendichi R, Ossola F, Russo U, Simon S, Tomasin P, Vigato PA (2006) Evaluation of polymers for conservation treatments of outdoor exposed stone monuments. Part I: photo-oxidative weathering. Polym Degrad Stab 91(12):3083–3096. https://doi.org/10.1016/j.polymdegradstab.2006.08.012

  4. Ntelia E, Karapanagiotis I (2020) Superhydrophobic Paraloid B72. Prog Org Coat 139:105224. https://doi.org/10.1016/j.porgcoat.2019.105224

  5. Arancibia A, Henriquez-Roman J, Páez MA, Padilla-Campos L, Zagal JH, Costamagna J, Cárdenas-Jirón G (2006) Influence of 5-chloro and 5-methyl benzotriazole on the corrosion of copper in acid solution: an experimental and theoretical approach. J Solid State Electrochem 10(11):894–904. https://doi.org/10.1007/s10008-005-0014-x

    Article  CAS  Google Scholar 

  6. Zhong S, Li J, Cai Y, Yi L (2019) Novel surfactant-free waterborne acrylic-silicone modified alkyd hybrid resin coatings containing nano-silica for the corrosion protection of carbon steel. Polym-Plast Technol Eng 58(8):866–878. https://doi.org/10.1080/03602559.2018.1542711

    Article  CAS  Google Scholar 

  7. Jiao C, Sun L, Shao Q, Song J, Hu Q, Naik N (2021) Guo Z (2021) Advances in waterborne acrylic resins: synthesis principle, modification strategies, and their applications. ACS Omega 6(4):2443–2449. https://doi.org/10.1021/acsomega.0c05593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mihelčič M, Slemenik Perše L, Šest E, Jerman I, Giuliani C, Di Carlo G, Lavorgna M, Surca AK (2018) Development of solvent- and water-borne fluoropolymer protective coatings for patina-free bronze discs. Prog Org Coat 125:266–278. https://doi.org/10.1016/j.porgcoat.2018.09.014

    Article  CAS  Google Scholar 

  9. Swartz NA, Wood KA, Lasseter Clare T (2012) Characterizing and improving performance properties of thin solid films produced by weatherable water-borne colloidal suspensions on bronze substrates. Prog Org Coat 75(3):215–223. https://doi.org/10.1016/j.porgcoat.2012.04.017

    Article  CAS  Google Scholar 

  10. Wang X, Cui Y, Wang Y, Ban T, Zhang Y, Zhang J, Zhu X (2021) Preparation and characteristics of crosslinked fluorinated acrylate modified waterborne polyurethane for metal protection coating. Prog. Org. Coat. 158:106371. https://doi.org/10.1016/j.porgcoat.2021.106371

  11. Ress J, Martin U, Bastidas DM (2021) Improved corrosion protection of acrylic waterborne coating by doping with microencapsulated corrosion inhibitors. Coatings 11(9):1–12. https://doi.org/10.3390/coatings11091134

    Article  CAS  Google Scholar 

  12. González E, Stuhr R, Vega JM, García-Lecina E, Grande HJ, Leiza JR, Paulis M (2021) Assessing the effect of CeO2 nanoparticles as corrosion inhibitor in hybrid biobased waterborne acrylic direct to metal coating binders. Polymers 13(6):1–13. https://doi.org/10.3390/polym13060848

    Article  CAS  Google Scholar 

  13. Ecco LG, Fedel M, Deflorian F, Becker J, Brummerstedt Iversen B, Mamakhel A (2016) Waterborne acrylic paint system based on nanoceria for corrosion protection of steel. Prog Org Coat 96:19–25. https://doi.org/10.1016/j.porgcoat.2016.02.010

    Article  CAS  Google Scholar 

  14. Song D, Yin Z, Liu F, Wan H, Gao J, Zhang D, Li X (2017) Effect of carbon nanotubes on the corrosion resistance of water-borne acrylic coatings. Prog Org Coat 110:182–186. https://doi.org/10.1016/j.porgcoat.2017.04.043

    Article  CAS  Google Scholar 

  15. Dhoke SK, Khanna AS (2012) Electrochemical impedance spectroscopy (EIS) study of nano-alumina modified alkyd based waterborne coatings. Prog Org Coat 74(1):92–99. https://doi.org/10.1016/j.porgcoat.2011.11.020

    Article  CAS  Google Scholar 

  16. Almeida E, Santos D, Fragata F, Rincon O, Morcillo M (2001) Alternative environmentally friendly coatings for mild steel and electrogalvanized steel to be exposed to atmospheres. Materials and Corrosion 52:904–919. https://doi.org/10.1002/1521-4176(200112)52:12%3C904::AID-MACO904%3E3.0.CO;2-B

  17. Dou B, Xiao H, Lin X, Zhang Y, Zhao S, Duan S, Gao X, Fang Z (2021) Investigation of the anti-corrosion properties of fluorinated carbon steel. Coatings 11:254. https://doi.org/10.3390/coatings11020254

    Article  CAS  Google Scholar 

  18. Yang M, Wu J, Fang D, Li B, Yang Y (2018) Corrosion protection of waterborne epoxy coatings containing mussel-inspired adhesive polymers based on polyaspartamide derivatives on carbon steel. J Mater Sci Technol 34(12):2464–2471. https://doi.org/10.1016/j.jmst.2018.05.009

    Article  CAS  Google Scholar 

  19. Balbo A, Chiavari C, Martini C, Monticelli C (2012) Effectiveness of corrosion inhibitor films for the conservation of bronzes and gilded bronzes. Corros Sci 59:204–212. https://doi.org/10.1016/j.corsci.2012.03.003

    Article  CAS  Google Scholar 

  20. Zucchi F, Frignani A, Grassi V, Trabanelli G, DalColle M (2007) The formation of a protective layer of 3-mercapto-propyl-trimethoxy-silane on copper. Corros Sci 49(3):1570–1583. https://doi.org/10.1016/j.corsci.2006.08.019

    Article  CAS  Google Scholar 

  21. Masi G, Josse C, Esvan J, Chiavari C, Bernardi E, Martini E, Bignozzi MC, Monticelli C, Zanotto F, Balbo A, Svara Fabjan E, Kosec T, Robbiola L (2019) Evaluation of the protectiveness of an organosilane coating on patinated Cu-Si-Mn bronze for contemporary art. Prog Org Coat 127:286–299. https://doi.org/10.1016/j.porgcoat.2018.11.027

    Article  CAS  Google Scholar 

  22. Deflorian F, Rossi S, Fedrizzi L, Fedel M (2008) Integrated electrochemical approach for the investigation of silane pre-treatments for painting copper. Prog Org Coat 63(3):338–344. https://doi.org/10.1016/j.porgcoat.2008.03.005

    Article  CAS  Google Scholar 

  23. Sathyanarayana MN, Yaseen M (1995) Role of promoters in improving adhesions of organic coatings to a substrate. Prog Org Coat 26(2–4):275–313. https://doi.org/10.1016/0300-9440(95)00572-2

    Article  CAS  Google Scholar 

  24. Hong-wei S, Fu-chun L, En-hou H (2010) Characterization of self-assembled nano-phase silane-based particle coating. Trans Nonferrous Met Soc China 20(10):1928–1935. https://doi.org/10.1016/S1003-6326(09)60397-6

    Article  CAS  Google Scholar 

  25. Bajat JB, Milošev I, Jovanović Ž, Mišković-Stanković VB (2010) Studies on adhesion characteristics and corrosion behaviour of vinyltriethoxysilane/epoxy coating protective system on aluminium. Appl Surf Sci 256(11):3508–3517. https://doi.org/10.1016/j.apsusc.2009.12.100

    Article  CAS  Google Scholar 

  26. Liang C, Wang P, Wu B, Huang N (2010) Inhibition of copper corrosion by self-assembled monolayers of triazole derivate in chloride–containing solution. J Solid State Electrochem 14(8):1391–1399. https://doi.org/10.1007/s10008-009-0956-5

    Article  CAS  Google Scholar 

  27. Simbeck T, Hammer MM, Thomaier S, Stock C, Riedl E, Gores HJ (2012) Kinetics of adsorption of poly(vinylimidazole) (PVI) onto copper surfaces investigated by quartz crystal microbalance studies. J Solid State Electrochem 16:3467–3472. https://doi.org/10.1007/s10008-012-1838-9

    Article  CAS  Google Scholar 

  28. Sharma R, Ullas AV, Ji G, Prakash R (2022) Creation of leather black dye film on copper through spin coating and drop casting, and comparative investigation of their corrosion behaviour in sodium chloride solutions. J Solid State Electrochem 26:2883–2898. https://doi.org/10.1007/s10008-022-05293-w

    Article  CAS  Google Scholar 

  29. Kristan Mioč E, Hajdari Gretić Z, Otmačić Ćurković H (2018) Modification of cupronickel alloy surface with octadecylphosphonic acid self–assembled films for improved corrosion resistance. Corros Sci 134:189–198. https://doi.org/10.1016/j.corsci.2018.02.021

    Article  CAS  Google Scholar 

  30. Mikić D, Otmačić Ćurković H, Hosseinpour S (2022) Bronze corrosion protection by long-chain phosphonic acids. Corros Sci 205:110445. https://doi.org/10.1016/j.corsci.2022.110445

  31. Elia A, De Wael K, Dowsett M, Adriaens A (2012) Electrochemical deposition of a copper carboxylate layer on copper as potential corrosion inhibitor. J Solid State Electrochem 16:143–148. https://doi.org/10.1007/s10008-010-1283-6

    Article  CAS  Google Scholar 

  32. Dalmoro V, Zimnoch dos Santos JH, Schermann Azambuja D (2012) Corrosion behaviour of AA2024-T3 alloy treated with phosphonate-containing TEOS. J Solid State Electrochem 16:403–414. https://doi.org/10.1007/s10008-011-1346-3

    Article  CAS  Google Scholar 

  33. Nothdurft P, Feldbacher S, Jakopic G, Mühlbacher I, Poetz S, Kern W (2018) Surface characterization of copper substrates modified with carboxyl terminated phosphonic acids. Int J Adhes Adhes 84:143–152. https://doi.org/10.1016/j.ijadhadh.2018.03.012

    Article  CAS  Google Scholar 

  34. Mikić D, Otmačić Ćurković H (2023) Protection of patinated bronze with long-chain phosphonic acid/organic coating combined system. Mater 16(4):1660. https://doi.org/10.3390/ma16041660

    Article  CAS  Google Scholar 

  35. Swartz NA, Clare Lasseter T (2012) Understanding the differences in film formation mechanisms of two comparable solvent based and water-borne coatings on bronze substrates by electrochemical impedance spectroscopy. Electrochim Acta 62:199–206. https://doi.org/10.1016/j.electacta.2011.12.015

    Article  CAS  Google Scholar 

  36. Xu J, Rong X, Chi T, Wang M, Wang Y, Yang D, Qiu F (2013) Preparation, characterization of UV-curable waterborne polyurethane- acrylate and the application in metal iron surface protection. J Appl Polym Sci 130(5):3142–3152. https://doi.org/10.1002/app.39539

    Article  CAS  Google Scholar 

  37. Ryu YS, Lee YH, Kim JS, Park CC, Kim HD (2017) Preparation and properties of emulsifier-/solvent-free polyurethane-acrylic hybrid emulsions for binder materials: Effect of the glycidyl methacrylate/acrylonitrile content. J Appl Polym Sci 134(8):1–9. https://doi.org/10.1002/app.44497

    Article  CAS  Google Scholar 

  38. Kapitanović A, Otmačić Ćurković H (2022) The effect of corrosion conditions on aging of artificial patina on three bronzes. Coatings 12(7):1–16. https://doi.org/10.3390/coatings12070936

    Article  CAS  Google Scholar 

  39. Marušić K, Otmačić Ćurković H, Horvat Kurbegović Š, Takenouti H, Stupnišek Lisac E (2009) Comparative studies of chemical and electrochemical preparation of artificial bronze patinas and their protection by corrosion inhibitor. Electrochim Acta 54(27):7106–7113. https://doi.org/10.1016/j.electacta.2009.07.014

    Article  CAS  Google Scholar 

  40. Di Carlo G, Giuliani C, Riccucci C, Pascucci M, Messina E, Fierro G, Lavorgna M, Ingo GM (2017) Artificial patina formation onto copper-based alloys: chloride and sulphate induced corrosion processes. Appl Surf Sci 421:120–127. https://doi.org/10.1016/j.apsusc.2017.01.080

    Article  CAS  Google Scholar 

  41. Masi G, Esvan J, Josse C, Chiavari C, Bernardi E, Martini C, Bignozzi MC, Gartner N, Kosec T, Robbiola L (2017) Characterisation of typical patinas simulating bronze corrosion in outdoor conditions. Mater Chem Phys 200:308–321. https://doi.org/10.1016/j.matchemphys.2017.07.091

    Article  CAS  Google Scholar 

  42. Doménech-Carbó A, Ramírez-Barat B, Petiti C, Goidanich S, Doménech-Carbó MT, Cano E (2020) Characterization of traditional artificial patinas on copper using the voltammetry of immobilized particles. J Electroanal Chem 877:114494. https://doi.org/10.1016/j.jelechem.2020.114494

  43. del PB Hernández R, Aoki IV, Tribollet B, de Melo HG (2011) Electrochemical impedance spectroscopy investigation of the electrochemical behaviour of copper coated with artificial patina layers and submitted to wet and dry cycles. Electrochim Acta 56(7):2801–2814. https://doi.org/10.1016/j.electacta.2010.12.059

    Article  CAS  Google Scholar 

  44. Deutsches Kupferinstitut (2013) Chemische farbungen von kupfer and kupferlegierunger, Düsseldorf. https://kupfer.de/wpcontent/uploads/2019/11/chemische-Faerbungen_Endfassung-2010.pdf. Accessed 13 Oct 2022

  45. Le Pen C, Lacabanne C, Pébère N (2003) Characterisation of water-based coatings by electrochemical impedance spectroscopy. Prog Org Coat 46(2):77–83. https://doi.org/10.1016/S0300-9440(02)00213-8

    Article  CAS  Google Scholar 

  46. Mansfeld F (1995) Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. J Appl Electrochem 25(3):187–202. https://doi.org/10.1007/BF00262955

    Article  Google Scholar 

  47. Cano E, Lafuente D, Bastidas DM (2010) Use of EIS for the evaluation of the protective properties of coatings for metallic cultural heritage: a review. J Solid State Electrochem 14(3):381–391. https://doi.org/10.1007/s10008-009-0902-6

    Article  CAS  Google Scholar 

  48. Grundmeier G, Schmidt W, Stratmann M (2000) Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation. Electrochim Acta 45(15–16):2515–2533. https://doi.org/10.1016/S0013-4686(00)00348-0

    Article  CAS  Google Scholar 

  49. Qian H, Fu X, Chi Y, Zhang R, Zhan C, Sun H, Zhou X, Sun J (2021) Study on electrodeposition and corrosion resistance of Cu-Sn alloy prepared in ChCl-EG deep eutectic solvent. J Solid State Electrochem 26:469–479. https://doi.org/10.1007/s10008-021-05086-7

    Article  CAS  Google Scholar 

  50. Cano E, Bastidas DM, Argyropoulos V, Fajardo S, Siatou A, Bastidas JM, Degrigny C (2010) Electrochemical characterization of organic coatings for protection of historic steel artefacts. J Solid State Electrochem 14(3):453–463. https://doi.org/10.1007/s10008-009-0907-1

    Article  CAS  Google Scholar 

  51. Otmačić Ćurković H, Kosec T, Marušić K, Legat A (2012) An electrochemical impedance study of the corrosion protection of artificially formed patinas on recent bronze. Electrochim Acta 83:28–39. https://doi.org/10.1016/j.electacta.2012.07.094

    Article  CAS  Google Scholar 

  52. Kwolek P, Dychtoń K, Pytel M (2019) Orthophosphoric acid solutions of sodium orthovanadate, sodium tungstate, and sodium molybdate as potential corrosion inhibitors of the Al2Cu intermetallic phase. J Solid State Electrochem 23:3019–3029. https://doi.org/10.1007/s10008-019-04397-0

    Article  CAS  Google Scholar 

  53. Liu Y, Tan G, Tang J, Zhang L, zhe Shen G, Gu Z, Jie X (2023) Enhanced corrosion and wear resistance of Zn–Ni/Cu–Al2O3 composite coating prepared by cold spray. J Solid State Electrochem 27:439–453. https://doi.org/10.1007/s10008-022-05335-3

    Article  CAS  Google Scholar 

  54. Ecco LG, Li J, Fedel M, Deflorian F, Pan J (2014) EIS and in situ AFM study of barrier property and stability of waterborne and solventborne clear coats. Prog Org Coat 77(3):600–608. https://doi.org/10.1016/j.porgcoat.2013.11.024

    Article  CAS  Google Scholar 

  55. Evesque M, Keddam M, Takenouti H (2004) The formation of self-assembling membrane of hexadecane-thiol on silver to prevent the tarnishing. Electrochim Acta 49(17):2937–2943. https://doi.org/10.1016/j.electacta.2004.01.052

    Article  CAS  Google Scholar 

  56. Otmačić MK, Ćurković H, Takenouti H (2011) Inhibiting effect of 4-methyl-1-p-tolylimidazole to the corrosion of bronze patinated in sulphate medium. Electrochim Acta 56(22):7491–7502. https://doi.org/10.1016/j.electacta.2011.06.107

    Article  CAS  Google Scholar 

  57. de Levie R (1964) On porous electrodes in electrolyte solution−IV. Electrochim Acta 9(9):1231–1245. https://doi.org/10.1016/0013-4686(64)85015-5

    Article  Google Scholar 

  58. Barcia OE, D’Elia E, Frateur I, Mattos OR, Pébère N, Tribollet B (2002) Application of the impedance model of de Levie for the characterization of porous electrodes. Electrochim Acta 47(13–14):2109–2116. https://doi.org/10.1016/S0013-4686(02)00081-6

    Article  CAS  Google Scholar 

Download references

Funding

This work was fully supported and funded by the Croatian Science Foundation under the project IP-2019-04-5030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Otmačić Ćurković.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapitanović, A., Otmačić Ćurković, H. The influence of phosphonic acid pretreatment on the bronze corrosion protection by waterborne coating. J Solid State Electrochem 27, 1861–1875 (2023). https://doi.org/10.1007/s10008-023-05490-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05490-1

Keywords

Navigation