Skip to main content

Advertisement

Log in

Stable sodium-ion battery anode enabled by encapsulating Sb nanoparticles in spherical carbon shells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Antimony (Sb) has been recognized as one of the most promising metal anode materials for sodium-ion batteries, owing to its high capacity and suitable sodiation potential. Nevertheless, the large volume variation during (de)alloying can lead to material fracture and amorphization, which seriously affects their cycling stability. In this work, we report an engineering strategy by encapsulating Sb nanoparticles in nitrogen-doped spherical carbon shells (Sb@CN). This unique structure can efficiently accommodate volume variation and release stress upon sodiation, thus maintaining structural integrity. As a result, the Sb@CN composite exhibits an excellent sodium storage performance, achieving a capacity of 282 mAh g−1 over 5000 cycles at the current density of 0.66 A g−1, and the capacity retention rate from the second cycle to the 5000th cycle is close to 100%. Moreover, it also shows a remarkable rate capability of 217 mAh g−1 at a high current density of 3.3 A g−1. It is believed that this composition strategy would provide guidance toward stable alloy anodes for sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou Y, Liu K, Zhou Y, Ni J-H, Dou A-C, Su M-R, Liu Y-J (2020) Synthesis of a novel hexagonal porous TT-Nb2O5 via solid state reaction for high-performance lithium ion battery anodes. J Cent South Univ 27(12):3625–3636

    Article  CAS  Google Scholar 

  2. Goikolea E, Palomares V, Wang S, de Larramendi IR, Guo X, Wang G, Rojo T (2020) Na-ion batteries—approaching old and new challenges. Adv Energy Mater 10(44):2002055

    Article  CAS  Google Scholar 

  3. Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad MI (2020) Prospects in anode materials for sodium ion batteries-a review. Renew Sustain Energy Rev 119:109549

    Article  CAS  Google Scholar 

  4. Xiao J, Li X, Tang K, Wang D, Long M, Gao H, Chen W, Liu C, Liu H, Wang G (2021) Recent progress of emerging cathode materials for sodium ion batteries. Mater Chem Front 5(10):3735–3764

    Article  CAS  Google Scholar 

  5. Abraham K (2020) How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett 5(11):3544–3547

    Article  CAS  Google Scholar 

  6. Hirsh HS, Li Y, Tan DH, Zhang M, Zhao E, Meng YS (2020) Sodium-ion batteries paving the way for grid energy storage. Adv Energy Mater 10(32):2001274

    Article  CAS  Google Scholar 

  7. Zhang H, Huang Y, Ming H, Cao G, Zhang W, Ming J, Chen R (2020) Recent advances in nanostructured carbon for sodium-ion batteries. J Mater Chem 8(4):1604–1630

    Article  CAS  Google Scholar 

  8. Beda A, Rabuel F, Morcrette M, Knopf S, Taberna P-L, Simon P, Ghimbeu CM (2021) Hard carbon key properties allow for the achievement of high Coulombic efficiency and high volumetric capacity in Na-ion batterie. J Mater Chem 9(3):1743–1758

    Article  CAS  Google Scholar 

  9. Cheng D, Zhou X, Hu H, Li Z, Chen J, Miao L, Ye X, Zhang H (2021) Electrochemical storage mechanism of sodium in carbon materials: a study from soft carbon to hard carbon. Carbon 182:758–769

    Article  CAS  Google Scholar 

  10. Ni J, Wang W, Wu C, Liang H, Maier J, Yu Y, Li L (2017) Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv Mater 29(9):1605607

    Article  Google Scholar 

  11. Choi Y-S, Byeon Y-W, Ahn J-P, Lee J-C (2017) Formation of Zintl ions and their configurational change during sodiation in Na–Sn battery. Nano Lett 17(2):679–686

    Article  CAS  PubMed  Google Scholar 

  12. Liang S, Cheng YJ, Zhu J, Xia Y, Müller-Buschbaum P (2020) A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes. Small Methods 4(8):2000218

    Article  CAS  Google Scholar 

  13. Fang L, Bahlawane N, Sun W, Pan H, Xu BB, Yan M, Jiang Y (2021) Conversion-alloying anode materials for sodium ion batteries. Small 17(37):2101137

    Article  CAS  Google Scholar 

  14. Fang S, Bresser D, Passerini S (2022) Transition metal oxide anodes for electrochemical energy storage in lithium-and sodium-ion batteries. Transition Metal Oxides for Electrochemical Energy Storage, pp. 55–99

  15. Ma M, Yao Y, Wu Y, Yu Y (2020) Progress and prospects of transition metal sulfides for sodium storage. Adv Fiber Mater 2(6):314–337

    Article  CAS  Google Scholar 

  16. Liu Q, Hu Z, Zou C, Jin H, Wang S, Li L (2021) Structural engineering of electrode materials to boost high-performance sodium-ion batteries. Cell Rep 2(9):100551

    Article  CAS  Google Scholar 

  17. Wang Z, Wang J, Ni J, Li L (2022) Structurally durable bimetallic alloy anodes enabled by compositional gradients. Adv Sci 9(16):2201209

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ni J, Li X, Sun M, Yuan Y, Liu T, Li L, Lu J (2020) Durian-inspired design of Bismuth–antimony alloy arrays for robust sodium storage. ACS Nano 14(7):9117–9124

    Article  CAS  PubMed  Google Scholar 

  19. Yang K, Tang J, Liu Y, Kong M, Zhou B, Shang Y, Zhang W-H (2020) Controllable synthesis of peapod-like Sb@ C and corn-like C@ Sb nanotubes for sodium storag. ACS Nano 14(5):5728–5737

    Article  CAS  PubMed  Google Scholar 

  20. Li T, Hu H, Cai T, Liu X, Wang Y, Wang L, Zhang Y, Xing W, Yan Z (2022) A core–shelled Sb@ C nanorod cathode with a graphene aerogel interlayer for high-capacity aluminum ion batteries. Nanoscale 2022

  21. Liu J, Yu L, Wu C, Wen Y, Yin K, Chiang F-K, Hu R, Liu J, Sun L, Gu L (2017) New nanoconfined galvanic replacement synthesis of hollow Sb@ C yolk–shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett 17(3):2034–2042

    Article  CAS  PubMed  Google Scholar 

  22. Lv Q, Liu Y, Ma T, Zhu W, Qiu X (2015) Hollow structured silicon anodes with stabilized solid electrolyte interphase film for lithium-ion batteries. ACS Appl Mater Interfaces 7(42):23501–23506

    Article  CAS  PubMed  Google Scholar 

  23. Lin D, Lu Z, Hsu P-C, Lee HR, Liu N, Zhao J, Wang H, Liu C, Cui Y (2015) A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ Sci 8(8):2371–2376

    Article  CAS  Google Scholar 

  24. Liu Z, Yu X-Y, Lou XWD, Paik U (2016) Sb@ C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ Sci 9(7):2314–2318

    Article  CAS  Google Scholar 

  25. Kuai X, Li K, Chen J, Wang H, Yao J, Chiang CL, Liu T, Ye H, Zhao J, Lin YG, Zhang L, Nicolosi V, Gao L (2022) Interfacial engineered vanadium oxide nanoheterostructures synchronizing high-energy and long-term potassium-ion storage. ACS Nano 16(1):1502–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li W, Sun X, Yu Y (2017) Si-, Ge-, Sn-based anode materials for lithium-ion batteries: from structure design to electrochemical performance. Small Methods 1(3):1600037

    Article  Google Scholar 

  27. Qian J, Wu X, Cao Y, Ai X, Yang H (2013) High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem 125(17):4731–4734

    Article  Google Scholar 

  28. Su D, Pei Y, Liu L, Liu Z, Liu J, Yang M, Wen J, Dai J, Deng H, Cao G (2021) Wire-in-wire TiO2/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano-Micro Lett 13:1–14

    Article  Google Scholar 

  29. Hou H, Jing M, Yang Y, Zhang Y, Song W, Yang X, Chen J, Chen Q, Ji X (2015) Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries. J Power Sources 284:227–235

    Article  CAS  Google Scholar 

  30. Nguyen A-G, Le HT, Verma R, Vu D-L, Park C-J (2022) Boosting sodium-ion battery performance using an antimony nanoparticle self-embedded in a 3D nitrogen-doped carbon framework anode. Chem Eng J 429:132359

    Article  CAS  Google Scholar 

  31. Liu J, Yu L, Wu C, Wen Y, Yin K, Chiang FK, Hu R, Liu J, Sun L, Gu L, Maier J, Yu Y, Zhu M (2017) New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett 17(3):2034–2042

    Article  CAS  PubMed  Google Scholar 

  32. Liang S, Cheng Y-J, Wang X, Xu Z, Ma L, Xu H, Ji Q, Zuo X, Müller-Buschbaum P, Xia Y (2021) Impact of CO2 activation on the structure, composition, and performance of Sb/C nanohybrid lithium/sodium-ion battery anodes. Nanoscale Adv 3(7):1942–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang Y, Leng S, Shi W (2021) Electrochemical exfoliation of porous antimonene as anode materials for sodium-ion batteries. Electrochem Commun 126

  34. Baggetto L, Allcorn E, Manthiram A, Veith GM (2013) Cu2Sb thin films as anode for Na-ion batteries. Electrochem Commun 27:168–171

    Article  CAS  Google Scholar 

  35. Liu Y, Shi J, Su M, Gao F, Lu Q (2022) Constructing inverse opal antimony@ carbon frameworks with multi-level porosity towards high performance sodium storage. J Alloy Compd 914:165335

    Article  CAS  Google Scholar 

  36. Nita C, Fullenwarth J, Monconduit L, Vidal L, Ghimbeu CM (2019) Influence of carbon characteristics on Sb/carbon nanocomposites formation and performances in Na-ion batteries. Mater Today Energy 13:221–232

    Article  Google Scholar 

  37. Ning X, Zhou X, Luo J, Ma L, Zhan L (2020) Ion-assisted construction of Sb/N-doped graphene as an anode for Li/Na ion batteries. Nanotechnology 31(9):095404

    Article  CAS  PubMed  Google Scholar 

  38. Li P, Yu L, Ji S, Xu X, Liu Z, Liu J, Liu J (2019) Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries. Chem Eng J 374:502–510

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the support of this work by Natural Science Foundation of China, grant# U1401248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 336 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Q., Jia, Y., Zhu, W. et al. Stable sodium-ion battery anode enabled by encapsulating Sb nanoparticles in spherical carbon shells. J Solid State Electrochem 27, 1433–1441 (2023). https://doi.org/10.1007/s10008-023-05483-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05483-0

Keywords

Navigation