Skip to main content
Log in

Ionic liquid incorporated SPEEK/Chitosan solid polymer electrolytes: ionic conductivity and dielectric study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, polymeric membranes composed of ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate supported sulfonated poly(ether ether ketone) (SPEEK), and chitosan (CS) were prepared as novel promising solid polymer electrolytes (SPEs). First, the SPEEK polymer matrix was obtained by sulfonation of the PEEK polymer backbone. A composite membrane series (SPEEK/CS/IL-(1–4)) was created by adding CS at varying weight ratios according to the SPEEK. Structural, thermal, mechanical, and morphological characterizations were performed by FTIR, TGA, DMA, and SEM, respectively. Proton conductivity and dielectric measurements were performed over a wide temperature range to evaluate electrochemical properties. Composite membranes were stable for electrochemical processes at average temperatures. Storage modules have also improved with the addition of CS. All composite membranes showed ionic conductivities greater than 1 × 10−4 S.cm−1, and the maximum conductivity was measured for SPEEK/CS/IL-4 as 9.87 × 10−3 S.cm−1. Proton conductivity and dielectric tests showed that the SPEEK/CS/IL membrane series was presented as a novel SPE candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 5:139–164. https://doi.org/10.1016/j.ensm.2016.07.003

    Article  Google Scholar 

  2. Mainar AR, Iruin E, Colmenares LC, Kvasha A, de Meatza I, Bengoechea M, Leonet O, Boyano I, Zhang Z, Blazquez JA (2018) An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc. J Energy Storage 15:304–328. https://doi.org/10.1016/j.est.2017.12.004

    Article  Google Scholar 

  3. Wong CY, Wong WY, Ramya K, Khalid M, Loh KS, Daud WRW, Lim KL, Walvekar R, Kadhum AAH (2019) Additives in proton exchange membranes for low- and high-temperature fuel cell applications: a review. Int J Hydrog Energy 44:6116–6135. https://doi.org/10.1016/j.ijhydene.2019.01.084

    Article  CAS  Google Scholar 

  4. Teo LP, Buraidah MH, Arof AK (2021) Development on solid polymer electrolytes for electrochemical devices. Molecules 26:6499. https://doi.org/10.3390/molecules26216499

  5. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22:1259–1279. https://doi.org/10.1007/s11581-016-1756-48

    Article  CAS  Google Scholar 

  6. Ke X, Liang Y, Ou L, Liu H, Chen Y, Wu W, Cheng Y, Guo Z, Lai Y, Liu P, Shi Z (2019) Surface engineering of commercial Ni foams for stable Li metal anodes. Energy Storage Mater 23:547–555. https://doi.org/10.1016/j.ensm.2019.04.003

    Article  Google Scholar 

  7. Liu G, Yang Y, Lu X, Qi F, Liang Y, Trukhanov A, Wu Y, Sun Z, Lu X (2022) Fully active bimetallic phosphide Zn0.5Ge0.5P: a novel high-performance anode for Na-ion batteries coupled with diglyme-based electrolyte. ACS Appl Mater Interfaces 14:1803–31813. https://doi.org/10.1021/acsami.2c03813

  8. Smitha B, Sridhar S, Khan AA (2003) Synthesis and characterization of proton conducting polymer membranes for fuel cells. J Membr Sci 225:63–76. https://doi.org/10.1016/S0376-7388(03)00343-0

    Article  CAS  Google Scholar 

  9. Shaari N, Kamarudin SK (2019) Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: an overview. Int J Energy Res 43:2756–2794. https://doi.org/10.1002/er.4348

    Article  CAS  Google Scholar 

  10. Jasti A, Prakash S, Shahi VK (2013) Stable and hydroxide ion conductive membranes for fuel cell applications: chloromethylation and amination of poly(ether ether ketone). J Membr Sci 428:470–479. https://doi.org/10.1016/j.memsci.2012.11.016

    Article  CAS  Google Scholar 

  11. Mikhailenko SD, Zaidi SMJ, Kaliaguine S (2001) Sulfonated polyether ether ketone based composite polymer electrolyte membranes. Catal Today 67:225–236. https://doi.org/10.1016/S0920-5861(01)00290-5

    Article  CAS  Google Scholar 

  12. Yee RSL, Rozendal RA, Zhang K, Ladewig BP (2012) Cost effective cation exchange membranes: a review. Chem Eng Res Des 90:950–959. https://doi.org/10.1016/j.cherd.2011.10.015

    Article  CAS  Google Scholar 

  13. Bano S, Negi YS, Illathvalappil R, Kurungot S, Ramya K (2019) Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes. Electrochim Acta 293:260–272. https://doi.org/10.1016/j.electacta.2018.10.029

    Article  CAS  Google Scholar 

  14. Li L, Zhang J, Wang Y (2003) Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J Membr Sci 226:159–167. https://doi.org/10.1016/j.memsci.2003.08.018

    Article  CAS  Google Scholar 

  15. Gong C, Zheng X, Liu H, Wang G, Cheng F, Zheng G, Wen S, Law WC, Tsui CP, Tang CY (2016) A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes. J Power Sources 325:453–464. https://doi.org/10.1016/j.jpowsour.2016.06.061

    Article  CAS  Google Scholar 

  16. Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238. https://doi.org/10.1016/j.jpowsour.2007.03.044

    Article  CAS  Google Scholar 

  17. Khomein P, Ketelaars W, Lap T, Liu G (2021) Sulfonated aromatic polymer as a future proton exchange membrane: a review of sulfonation and crosslinking methods, Renew. Sust Energ Rev 137:110471. https://doi.org/10.1016/j.rser.2020.110471

  18. Bisht S, Balaguru S, Ramachandran SK, Gangasalam A, Kweon J (2021) Proton exchange composite membranes comprising SiO2, sulfonated SiO2, and metal–organic frameworks loaded in SPEEK polymer for fuel cell applications. J Appl Polym Sci 138:50530. https://doi.org/10.1002/app.50530

    Article  CAS  Google Scholar 

  19. Parnian MJ, Rowshanzamir S, Prasad AK, Advani SG (2018) Effect of ceria loading on performance and durability of sulfonated poly (ether ether ketone) nanocomposite membranes for proton exchange membrane fuel cell applications. J Membr Sci 565:342–357. https://doi.org/10.1016/j.memsci.2018.08.029

    Article  CAS  Google Scholar 

  20. Yılmazoğlu M, Bayıroğlu F, Erdemi H, Abaci U, Guney HY (2021) Dielectric properties of sulfonated poly(ether ether ketone) (SPEEK) electrolytes with 1-ethyl-3-methylimidazolium tetrafluoroborate salt: Ionic liquid-based conduction pathways, Colloids Surf. A Physicochem Eng Asp 611:125825. https://doi.org/10.1016/j.colsurfa.2020.125825

  21. Yılmazoğlu M (2021) Development of proton conductive polymer electrolytes composed of sulfonated poly(ether ether ketone) and Brønsted acidic ionic liquid (1-methylimidazolium tetrafluoroborate). J Mater Sci Mater Electron 32:15393–15411. https://doi.org/10.1007/s10854-021-06089-w

    Article  CAS  Google Scholar 

  22. Tang X, Liu D, Wang YJ, Cui L, Ignaszak A, Yu Y, Zhang J (2021) Research advances in biomass-derived nanostructured carbons and their composite materials for electrochemical energy technologies. Prog Mater Sci 118:100770. https://doi.org/10.1016/j.pmatsci.2020.100770

  23. Sirajudeen AAO, Annuar MSM, Ishak KA, Yusuf H, Subramaniam R (2021) Innovative application of biopolymer composite as proton exchange membrane in microbial fuel cell utilizing real wastewater for electricity generation. J Clean Prod 278:123449. https://doi.org/10.1016/j.jclepro.2020.123449

  24. Peter S, Lyczko N, Gopakumar D, Maria HJ, Nzihou A, Thomas S (2021) Chitin and chitosan based composites for energy and environmental applications: a review. Waste Biomass Valorization 12:4777–4804. https://doi.org/10.1007/s12649-020-01244-6

    Article  CAS  Google Scholar 

  25. Azmana M, Mahmood S, Hilles AR, Rahman A, Arifin MAB (2021) Shakeeb Ahmed, A review on chitosan and chitosan-based bionanocomposites: promising material for combatting global issues and its applications. Int J Biol Macromol 185:832–848. https://doi.org/10.1016/j.ijbiomac.2021.07.023

    Article  CAS  PubMed  Google Scholar 

  26. Swaghatha AIAK, Cindrella L (2022) Assessment of proton conductivity, dielectric relaxation and other physicochemical properties of LTA zeolite blended chitosan composites for membrane applications. React Funct Polym 170:105116. https://doi.org/10.1016/j.reactfunctpolym.2021.105116

  27. Gil-Castell O, Teruel-Juanes R, Arenga F, Salaberria AM, Baschetti MG, Labidi J, Badia JD, Ribes-Greus A (2019) Crosslinked chitosan/poly(vinyl alcohol)-based polyelectrolytes for proton exchange membranes. React Funct Polym 142:213–222. https://doi.org/10.1016/j.reactfunctpolym.2019.06.003

    Article  CAS  Google Scholar 

  28. Wong CY, Wong WY, Loh KS, Khalid M, Daud WRW, Lim KL, Walvekar R (2020) Influences of crosslinked carboxylic acid monomers on the proton conduction characteristics of chitosan/SPVA composite membranes. Polymer 203:122782. https://doi.org/10.1016/j.polymer.2020.122782

  29. Ranjani M, Pannipara M, Al-Sehemi AG, Vignesh A, Kumar GG (2019) Chitosan/sulfonated graphene oxide/silica nanocomposite membranes for direct methanol fuel cells. Solid State Ion 338:153–160. https://doi.org/10.1016/j.ssi.2019.05.010

    Article  CAS  Google Scholar 

  30. Vijayakumar V, Khastgir D (2018) Hybrid composite membranes of chitosan/sulfonated polyaniline/silica as polymer electrolyte membrane for fuel cells. Carbohydr Polym 179:152–163. https://doi.org/10.1016/j.carbpol.2017.09.083

    Article  CAS  PubMed  Google Scholar 

  31. Blanco JF, Nguyen QT, Schaetzel P (2001) Novel hydrophilic membrane materials: Sulfonated polyethersulfone Cardo. J Membr Sci 186:267–279. https://doi.org/10.1016/S0376-7388(01)00331-3

    Article  CAS  Google Scholar 

  32. Aini NA, Yahya MZA, Lepit A, Jaafar NK, Harun MK, Ali AMM (2012) Preparation and characterization of UV irradiated SPEEK/chitosan membranes. Int J Electrochem Sci 7:8226–8235

    CAS  Google Scholar 

  33. Katti P, Kundan KV, Kumar S, Bose S (2017) Improved mechanical properties through engineering the interface by poly (ether ether ketone) grafted graphene oxide in epoxy based nanocomposites. Polymer 122:184–193. https://doi.org/10.1016/j.polymer.2017.06.059

    Article  CAS  Google Scholar 

  34. Pugalenthi MR, Gayathri R, Guozhong C, Prabhu MR (2022) Study of amine customized exfoliated BN sheets in SPEEK-PES based blend membrane for acid-base cation exchange membrane fuel cells. J Environ Chem Eng 10:107025. https://doi.org/10.1016/j.jece.2021.107025

  35. Malik RS, Verma P, Choudhary V (2015) A study of new anhydrous, conducting membranes based on composites of aprotic ionic liquid and cross-linked SPEEK for fuel cell application. Electrochim Acta 152:352–359. https://doi.org/10.1016/j.electacta.2014.11.167

    Article  CAS  Google Scholar 

  36. Shashidhara GM, Kumar KN (2010) Proton conductivity of SPEEK membranes. Polym Plast Technol Eng 49(8):796–806. https://doi.org/10.1080/03602551003749601

    Article  CAS  Google Scholar 

  37. Yi S, Zhang F, Li W, Huang C, Zhang H, Pan M (2011) Anhydrous elevated-temperature polymer electrolyte membranes based on ionic liquids. J Membr Sci 366:349–355. https://doi.org/10.1016/j.memsci.2010.10.031

    Article  CAS  Google Scholar 

  38. Mistry MK, Subianto S, Choudhury NR, Dut NK (2009) Interfacial interactions in aprotic ionic liquid based protonic membrane and its correlation with high temperature conductivity and thermal properties. Langmuir 25:9240–9251. https://doi.org/10.1021/la901330y

    Article  CAS  PubMed  Google Scholar 

  39. Leones R, Sabadini RC, Esperança JMSS, Pawlicka A, Silva MM (2017) Playing with ionic liquids to uncover novel polymer electrolytes. Solid State Ion 300:46–52. https://doi.org/10.1016/j.ssi.2016.11.018

    Article  CAS  Google Scholar 

  40. Vijayalekshmi V, Khastgir D (2018) Fabrication and comprehensive investigation of physicochemical and electrochemical properties of chitosan-silica supported silicotungstic acid nanocomposite membranes for fuel cell applications. Energy 142:313–330. https://doi.org/10.1016/j.energy.2017.10.019

    Article  CAS  Google Scholar 

  41. Leones R, Reis PM, Sabadini RC, Esperança JMSS, Pawlicka A, Silva MM (2020) Chitosan polymer electrolytes doped with a dysprosium ionic liquid. J Polym Res 27:45. https://doi.org/10.1007/s10965-020-2019-7

    Article  CAS  Google Scholar 

  42. Singh PK, Bhattacharya B, Nagarale RK, Kim KW, Rhee HW (2010) Synthesis, characterization and application of biopolymer-ionic liquid composite membranes. Synth Met 160:139–142. https://doi.org/10.1016/j.synthmet.2009.10.021

    Article  CAS  Google Scholar 

  43. Smitha B, Anjali Devi D, Sridhar S (2008) Proton-conducting composite membranes of chitosan and sulfonated polysulfone for fuel cell application. Int J Hydrog Energ 33:4138–4146. https://doi.org/10.1016/j.ijhydene.2008.05.055

  44. Shamsudin IJ, Ahmad A, Hassan NH, Kaddami H (2015) Bifunctional ionic liquid in conductive biopolymer based on chitosan for electrochemical devices application. Solid State Ion 278:11–19. https://doi.org/10.1016/j.ssi.2015.05.008

    Article  CAS  Google Scholar 

  45. Chun JH, Kim SG, Lee JY, Hyeon DH, Chun BH, Kim SH, Park KT (2013) Crosslinked sulfonated poly(arylene ether sulfone)/silica hybrid membranes for high temperature proton exchange membrane fuel cells. Renew Energy 51:22–28. https://doi.org/10.1016/j.renene.2012.09.005

    Article  CAS  Google Scholar 

  46. Gupta D, Choudhary V (2011) Studies on novel heat treated sulfonated poly(ether ether ketone) [SPEEK]/diol membranes for fuel cell applications. Int J Hydrog Energy 36:8525–8535. https://doi.org/10.1016/j.ijhydene.2011.04.044

    Article  CAS  Google Scholar 

  47. Mohan VM, Qiu W, Shen J, Chen W (2010) Electrical properties of poly(vinyl alcohol) (PVA) based on LiFePO4 complex polymer electrolyte films. J Polym Res 17:143. https://doi.org/10.1007/s10965-009-9300-0

    Article  CAS  Google Scholar 

  48. Tareev B (1979) Physics of dielectric materials. Mir Publishers, Moscow

    Google Scholar 

  49. Tang Z, Qi L, Gao G (2009) Polymer electrolytes based on copolymer of poly(ethylene glycol) di methacrylate and imidazolium ionic liquid. Solid State Ion 180:226–230. https://doi.org/10.1016/j.ssi.2008.12.009

    Article  CAS  Google Scholar 

  50. Saroj AL, Singh RK (2012) Thermal, dielectric and conductivity studies on PVA/ionic liquid EMIM][EtSO4] based polymer electrolytes. J Phys Chem Solids 73:162–168. https://doi.org/10.1016/j.jpcs.2011.11.012

    Article  CAS  Google Scholar 

  51. Rathod SG, Bhajantri RF, Ravindrachary V, Pujari PK, Sheela T (2014) Ionic conductivity and dielectric studies of LiClO4 doped poly(vinyl alcohol)(PVA)/chitosan(CS) composites. J Adv Dielectr 4:1450033. https://doi.org/10.1142/S2010135X14500337

    Article  CAS  Google Scholar 

  52. Erdemi H, Demir A, Baykal A (2013) Electrical properties of triethylene glycol stabilized MnxCo1-xFe2O4 nanoparticles. J Inorg Organomet Polym 23:690–702. https://doi.org/10.1007/s10904-013-9835-8

    Article  CAS  Google Scholar 

  53. McCrum NG, Read BE, Williams G (1991) Anelastic and dielectric effects in polymeric solids. Dover, New York

    Google Scholar 

  54. Bozkurt A (2002) Dielectric and conductivity relaxations in quaternary ammonium polymer. J Phys Chem Solids 63:685–690. https://doi.org/10.1016/S0022-3697(01)00214-1

    Article  CAS  Google Scholar 

  55. Erdemi H, Baykal A, Karaoglu E, Toprak MS (2012) Synthesis and conductivity studies of piperidine-4-carboxylic acid functionalized Fe3O4 nanoparticles. Mater Res Bull 47:2193–2199. https://doi.org/10.1016/j.materresbull.2012.06.006

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Research Fund of Yalova University. Project number: 2020/YL/0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesut Yılmazoğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmazoğlu, M., Bayıroğlu, F., Erdemi, H. et al. Ionic liquid incorporated SPEEK/Chitosan solid polymer electrolytes: ionic conductivity and dielectric study. J Solid State Electrochem 27, 1143–1154 (2023). https://doi.org/10.1007/s10008-023-05431-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05431-y

Keywords

Navigation