Skip to main content

Advertisement

Log in

From electrochromic phenomena to energy harvesting and storage—an overview of solid state ionics research at the Institute of Solid State Physics, University of Latvia

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Solid state ionics is one of the key research topics of the Institute of Solid State Physics, University of Latvia since its establishment. The research direction included topics ranging from electrochromic phenomena in transition metal oxides through gas sensors and electronic nose to materials for rechargeable battery electrodes and materials for hydrogen energy. By the late 1980s, the institute had become one of the biggest and most prolific solid state ionic centres in the USSR and Eastern Europe and continues to maintain its position among the regional leaders in the field. Regular regional conferences and workshops were organized and some of the published works can be ranked among the pioneering works in the world of science. This extensive historical review summarizes information on the development of solid state ionics, actual research and achievements from establishment of the institute to the present day. Currently many collaborations are ongoing with partners across Europe and beyond in research ranging from battery materials and smart windows for zero energy buildings to hydrogen production, maintaining and growing its strength as key national, regional, and international centre of research excellence in solid state ionics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lusis A (1975) Electrophysical properties of copper phosphate glasses. Doctoral Thesis. Peteris Stucka Latvian State University

  2. Lagzdons JL, Kleperis J, Lusis A (1975) Tungsten-oxygen compounds and electronic absorption spectra of W-P-O glasses. Sci Artic Pataeris Stucka Latv State Univ 231:7

    Google Scholar 

  3. Kleperis J, Lusis A (1976) Termomodulation absorption spectra of tungsten trioxide and W-P-O glasses. In: Physics and chemistry of glass-forming systems. Latvian State University, Riga, p 10

  4. Klavins J, Kleperis J, Lusis A, Pinnis J (1976) Electrochromic effect in thin WO3 layers - role of layer porosity. In: Physics and chemistry of glass-forming systems. Latvian State University, Riga, p 11

  5. Lusis A, Kleperis J, Zamozdik T et al (1980) Electrochromic devices for recording and displaying video information. In: Application of methods of optical information processing and holography. Leningrad, p 4

  6. Zamozdik T, Kleperis J (1981) Electrophysical properties of electrochromic elements. In: Oxide electrochromic materials. Latvian State University, Riga, p 11

  7. Brishka AA, Zamozdik TV, Kleperis J et al (1981) Volt-ampere and volt-transmission curves for thin-film electrochromic elements of tungsten trioxide. Sov Physics Tech Phys 26:583–586

    Google Scholar 

  8. Lusis A, Klavins J, Kleperis J, Pinnis J (1982) Electrochemical processes in solid electrochromic systems. Sov Electrochem 18:1372–1376

    Google Scholar 

  9. Deb SK (1969) A novel electrophotographic system. Appl Opt 8:192. https://doi.org/10.1364/AO.8.S1.000192

    Article  PubMed  Google Scholar 

  10. Lusis A, Klavins J, Zamozdik T et al (1981) Method of producing solid electrochromic element, Patent No. 4251138

  11. Rode O, Lusis A, Kleperis J et al (1979) Electrochrome element control device, United States Patent Office, Patent No. US4132465A

  12. Kleperis JJ, Takeris SJ, Lusis AR, Stradins JP (1984) The investigation of hydrogen diffusion in palladium by chemichromic reaction. Phys Status Solidi 81:K121–K125. https://doi.org/10.1002/pssa.2210810247

    Article  CAS  Google Scholar 

  13. Bajars GE, Linhardt P, Breiter MW (1990) Impedance and simulation studies of the cell electrode/hydrous antimonic acid/electrode. Electrochim Acta 35:1031–1036. https://doi.org/10.1016/0013-4686(90)90038-2

    Article  CAS  Google Scholar 

  14. Kleperis J, Bajars G, Vaivars G et al (1992) Gaseous sensors based on solid proton conductors. Sensors Actuators A Phys 32:476–479. https://doi.org/10.1016/0924-4247(92)80031-W

    Article  CAS  Google Scholar 

  15. Vaivars G, Pitkevičs J, Lusis A (1993) Sol-gel produced humidity sensor. Sensors Actuators B Chem 13:111–113. https://doi.org/10.1016/0925-4005(93)85337-A

    Article  CAS  Google Scholar 

  16. Lusis A, Kleperis J, Pentjušs E (2003) Model of electrochromic and related phenomena in tungsten oxide thin films. J Solid State Electrochem 7:106–112. https://doi.org/10.1007/s10008-002-0315-2

    Article  CAS  Google Scholar 

  17. Lusis AR, Pentjuss E, Bajars G et al (1997) Long-term testing results of WO3-based electrochromic cells. In: Silinsh EA, Medvids A, Lusis AR, Ozols AO (eds) Proceedings of SPIE - the international society for optical engineering, pp 234–238

  18. Azens A, Pentjuss E, Gutarra A et al (1994) Electrochromism in oxyfluoride thin films. In: Proceedings of SPIE - the international society for optical engineering. pp 435–442

  19. Vaivars G, Azens A, Kleperis J et al (1997) Proton conducting polymer electrolytes for electrochromic devices. In: Silinsh EA, Medvids A, Lusis AR, Ozols AO (eds) Proceedings of SPIE - the international society for optical engineering, pp 225–229

  20. Balerna A, Bernieri E, Burattini E et al (1991) EXAFS studies of MeO3−x (Me = W, Mo, Re, Ir) crystalline and amorphous oxides. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 308:234–239. https://doi.org/10.1016/0168-9002(91)90636-5

    Article  Google Scholar 

  21. Grinberga L, Hodakovska J, Kleperis J et al (2007) Electrochemical hydrogen storage and usage aspects: nickel electrode in acidic electrolyte. Russ J Electrochem 43:598–602. https://doi.org/10.1134/S1023193507050163

    Article  CAS  Google Scholar 

  22. Grinberga L, Kleperis J, Vaivars G et al (2007) Investigations of the influence of different additives to the lanthanum rich mischmetal. In: Hydrogen materials science and chemistry of carbon nanomaterials. Springer Netherlands, Dordrecht, pp 279–286

  23. Grinberga L, Kleperis J (2007) Development of new composite materials for hydrogen storage. The AB 5 type hydride alloy with silica glass support. J Phys Conf Ser 93:012024. https://doi.org/10.1088/1742-6596/93/1/012024

    Article  CAS  Google Scholar 

  24. Grinberga L, Kleperis J, Bajars G et al (2008) Estimation of hydrogen transfer mechanisms in composite materials. Solid State Ionics 179:42–45. https://doi.org/10.1016/j.ssi.2007.12.051

    Article  CAS  Google Scholar 

  25. Dimanta I, Kleperis J, Nakurte I et al (2016) Metal hydride alloys for storing hydrogen produced by anaerobic bacterial fermentation. Int J Hydrogen Energy 41:9394–9401. https://doi.org/10.1016/j.ijhydene.2016.04.064

    Article  CAS  Google Scholar 

  26. Lesnicenoks P, Grinberga L, Kleperis J (2014) Gravimetric and spectroscopic studies of reversible hydrogen sorption on nanoporous clinoptilolite. Latv J Phys Tech Sci 51:35–41. https://doi.org/10.2478/lpts-2014-0017

    Article  CAS  Google Scholar 

  27. Fu P, Wang J, Jia R et al (2017) Theoretical study on hydrogen storage capacity of expanded h-BN systems. Comput Mater Sci 139:335–340. https://doi.org/10.1016/j.commatsci.2017.08.015

    Article  CAS  Google Scholar 

  28. Straumal B, Korneva A, Kuzmin A et al (2022) High entropy alloys for energy conversion and storage: a review of grain boundary wetting phenomena. Energies 15:7130. https://doi.org/10.3390/en15197130

    Article  CAS  Google Scholar 

  29. Šutka A, Pärna R, Kleperis J et al (2014) Photocatalytic activity of non-stoichiometric ZnFe 2 O 4 under visible light irradiation. Phys Scr 89:044011. https://doi.org/10.1088/0031-8949/89/04/044011

    Article  CAS  Google Scholar 

  30. Piskunov S, Lisovski O, Begens J et al (2015) C-, N-, S-, and Fe-doped TiO 2 and SrTiO3 nanotubes for visible-light-driven photocatalytic water splitting: prediction from first principles. J Phys Chem C 119:18686–18696. https://doi.org/10.1021/acs.jpcc.5b03691

    Article  CAS  Google Scholar 

  31. Knoks A, Kleperis J, Grinberga L (2017) Raman spectral identification of phase distribution in anodic titanium dioxide coating. Proc Est Acad Sci 66:422. https://doi.org/10.3176/proc.2017.4.19

    Article  Google Scholar 

  32. Yang D-C, Eglitis RI, Yi Z-J et al (2022) Overall direct photocatalytic water-splitting on C 2 mm -graphyne: a novel two-dimensional carbon allotrope. J Mater Chem C 10:10843–10852. https://doi.org/10.1039/D2TC02345H

    Article  CAS  Google Scholar 

  33. Knoks A, Lesnicenoks P, Kleperis J et al (2019) Electro-catalytic and photo-catalytic reformation of CO 2 –reactions and efficiencies processes (review). IOP Conf Ser Mater Sci Eng 503:012009. https://doi.org/10.1088/1757-899X/503/1/012009

    Article  CAS  Google Scholar 

  34. Bajars G, Kucinskis G, Smits J, Kleperis J (2011) Physical and electrochemical properties of LiFePO4/C thin films deposited by direct current and radiofrequency magnetron sputtering. Solid State Ionics 188:156–159. https://doi.org/10.1016/j.ssi.2010.10.022

    Article  CAS  Google Scholar 

  35. Smits J, Kucinskis G, Bajars G, Kleperis J (2011) Structure and electrochemical characteristics of LiFePO4 as cathode material for lithium-ion batteries. Latv J Phys Tech Sci 48:27–31. https://doi.org/10.2478/v10047-011-0012-y

    Article  CAS  Google Scholar 

  36. Bajars G, Kucinskis G, Smits J et al (2012) Characterization of LiFePO 4/C composite thin films using electrochemical impedance spectroscopy. IOP Conf Ser Mater Sci Eng 38:012019. https://doi.org/10.1088/1757-899X/38/1/012019

    Article  CAS  Google Scholar 

  37. Kaprans K, Mateuss J, Dorondo A et al (2018) Electrophoretically deposited α-Fe2O3 and TiO2 composite anchored on rGO with excellent cycle performance as anode for lithium ion batteries. Solid State Ionics 319:1–6. https://doi.org/10.1016/j.ssi.2018.01.042

    Article  CAS  Google Scholar 

  38. Kaprans K, Bajars G, Kucinskis G et al (2015) Electrophoretic nanocrystalline graphene film electrode for lithium ion battery. IOP Conf Ser Mater Sci Eng 77:012042. https://doi.org/10.1088/1757-899X/77/1/012042

    Article  CAS  Google Scholar 

  39. Kucinskis G, Bozorgchenani M, Feinauer M et al (2022) Arrhenius plots for Li-ion battery ageing as a function of temperature, C-rate, and ageing state – an experimental study. J Power Sources 549:232129. https://doi.org/10.1016/j.jpowsour.2022.232129

    Article  CAS  Google Scholar 

  40. Bozorgchenani M, Kucinskis G, Wohlfahrt-Mehrens M, Waldmann T (2022) Experimental confirmation of C-rate dependent minima shifts in Arrhenius plots of Li-ion battery aging. J Electrochem Soc 169:030509. https://doi.org/10.1149/1945-7111/ac580d

    Article  CAS  Google Scholar 

  41. Kucinskis G, Nesterova I, Sarakovskis A et al (2022) Electrochemical performance of Na2FeP2O7/C cathode for sodium-ion batteries in electrolyte with fluoroethylene carbonate additive. J Alloys Compd 895:162656. https://doi.org/10.1016/j.jallcom.2021.162656

    Article  CAS  Google Scholar 

  42. Kucinskis G, Kruze B, Korde P et al (2022) Enhanced electrochemical properties of Na0.67MnO2 cathode for Na-ion batteries prepared with novel tetrabutylammonium alginate binder. Batteries 8:6. https://doi.org/10.3390/batteries8010006

    Article  CAS  Google Scholar 

  43. Kavaliukė V, Nesterova I, Kežionis A et al (2022) Combined conductivity and electrochemical impedance spectroscopy study of Na2FeP2O7 cathode material for sodium ion batteries. Solid State Ionics 385:116024. https://doi.org/10.1016/j.ssi.2022.116024

    Article  CAS  Google Scholar 

  44. Ramans GM, Gabrusenoks JV, Lusis AR, Patmalnieks AA (1987) Structure of amorphous thin films of WO3 and MoO3. J Non Cryst Solids 90:637–640. https://doi.org/10.1016/S0022-3093(87)80504-5

    Article  CAS  Google Scholar 

  45. Gabrusenoks J, Cikmach P, Lusis A et al (1984) Electrochromic colour centres in amorphous tungsten trioxide thin films☆. Solid State Ionics 14:25–30. https://doi.org/10.1016/0167-2738(84)90006-7

    Article  Google Scholar 

  46. Kleperis JJ, Cikmach PD, Lusis AR (1984) Colour centres in amorphous tungsten trioxide thin films. Phys Status Solidi 83:291–297. https://doi.org/10.1002/pssa.2210830132

    Article  CAS  Google Scholar 

  47. Bets V, Zamozdiks T, Lusis A et al (1987) The structure of nickel and indium oxide thin films from EXAFS data. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 261:173–174. https://doi.org/10.1016/0168-9002(87)90592-4

    Article  Google Scholar 

  48. Bets V, Veispals A, Lusis A et al (1987) Studies of tungsten oxide electrochromic thin films and polycrystals by the EXAFS method. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 261:175–177. https://doi.org/10.1016/0168-9002(87)90593-6

    Article  Google Scholar 

  49. Balerna A, Bernieri E, Burattini E et al (1991) XANES studies of MeO3-x (Me = W, Re, Ir) crystalline and amorphous oxides. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 308:240–242. https://doi.org/10.1016/0168-9002(91)90637-6

    Article  Google Scholar 

  50. Bajars G, Pitkevics J, Straumens J, Lusis A (1989) Electrochemical impedance of a tungsten (VI) oxide injection electrode in protic electrolytes. Sov Electrochem 25:749–752

    Google Scholar 

  51. Lagzdons J, Bajars G, Lusis A (1984) Modelling of the solid state electrochromic system WO3/HSbO3 x 2H2O/Ni(OH)2. Phys Status Solidi 84:K197–K200

    Article  CAS  Google Scholar 

  52. Lusis AR (1997) Functional models of electrochromic devices: cycling capacity and degradation. In: Silinsh EA, Medvids A, Lusis AR, Ozols AO (eds) Proceedings of SPIE - the international society for optical engineering, pp 167–173

  53. Bajars G, Pitkevics J, Lusis A et al (1989) Electrooptic characteristics of an electrochromic nickel-oxide electrode under potentiodynamic conditions. Sov Electrochem 25:292–298

    Google Scholar 

  54. Pentjuss E, Rodionov A, Kalendarev R et al (1997) Influence of treatment on stability of electrochromic WO3 film in acidic electrolyte. In: Silinsh EA, Medvids A, Lusis AR, Ozols AO (eds) Proceedings of SPIE - the international society for optical engineering, pp 230–233

  55. Darling A, AMIMechE (1958) The diffusion of hydrogen through palladium. Platin Met Rev 2:16

    CAS  Google Scholar 

  56. Kleperis J, Lūsis A (1993) Hydrogen transfer problems at metal/proton electrolyte interfaces*. Zeitschrift für Phys Chemie 181:321–328. https://doi.org/10.1524/zpch.1993.181.Part_1_2.321

    Article  CAS  Google Scholar 

  57. Lagzdons J, Lusis A, Kleperis J, Bajars G (1987) Electrochemical hydrogen sensor, patent No. 1440179

  58. Kleperis J, Lusis A, Takeris S (1986) Hydrogen detection method in metals, patent No. 1267233

  59. Liepina LK (1978) About the mechanism of hydrides in the reaction metal + water. In: Proceedings of the Latvian Academy of Sciences, chemical series, pp 152–1576

  60. Kleperis J, Vaivars G, Bajārs G et al (1993) Solid proton conductors as room-temperature gas sensors. Sensors Actuators B Chem 13:269–271. https://doi.org/10.1016/0925-4005(93)85378-N

    Article  CAS  Google Scholar 

  61. Kleperis J, Kundzins M, Vitins G et al (1995) Gas-sensitive gap formation by laser ablation in In2O3 layer: application as humidity sensor. Sensors Actuators B Chem 28:135–138

    Article  CAS  Google Scholar 

  62. Vaivars G, Kleperis J, Zubkans J et al (1995) Application of sol-gel and laser evaporation methods to obtain thin gas sensitive films. In: International conference on solid-state sensors and actuators, and Eurosensors IX, pp 870–873

  63. Vaivars G, Kleperis J, Zubkans J et al (1996) Influence of thin film coatings on the gas sensitivity properties of narrow laser cut gap in In2O3 on glass substrate. Sensors Actuators B Chem B Chem 33:173–177

    Article  CAS  Google Scholar 

  64. Zubkans J, Spetz AL, Sundgren H et al (1995) In-situ modification of the NOx sensitivity of thin discontinuous platinum films as gates of chemical sensors. Thin Solid Films 268:140–143. https://doi.org/10.1016/0040-6090(95)06863-5

    Article  CAS  Google Scholar 

  65. Kleperis J, Grinberga L, Paegle K, Lusis A (2000) Two possible applicators of electronic nose: beer producer and customs inspector. In: Proceedings of 7th International Symposium Olfaction & Electronic Nose 2000, pp 97–101

  66. Kleperis J, Grinberga L, Lusis A (2001) Electronic nose: what it is and application examples. Latv J Phys Tech Sci 5:57–66

    Google Scholar 

  67. Kleperis J, Grinberga L, Lusis A (2002) Quick authenticity testing of food and goods. Is it real with e/z – nose? In: Proceedings of the Ninth International Symposium on Olfaction and Electronic Nose, pp 89–94

  68. Ogorodnik V, Kleperis J, Taivans I et al (2008) Electronic nose for identification of lung diseases. Latv J Phys Tech Sci 45:60–67. https://doi.org/10.2478/v10047-008-0026-2

    Article  Google Scholar 

  69. Kleperis J, Grinberga L, D’Amico A (2003) Special issue papers: ISOEN 2003. In: Special Issue of Sensors and Actuators, vol. B106, issue 1, 2005. Riga, p 186

  70. Vaivars G, Kleperis J, Mlynarek G et al (1999) AC impedance behavior of the Ti4Ni2Oy and Ti3.5Zr0.5Ni2Oy type metal hydride electrodes. Ionics (Kiel) 5:292–298. https://doi.org/10.1007/BF02375853

    Article  CAS  Google Scholar 

  71. Kleperis J, Wójcik G, Czerwinski A et al (2001) Electrochemical behavior of metal hydrides. J Solid State Electrochem 5:229–249. https://doi.org/10.1007/s100080000149

    Article  CAS  Google Scholar 

  72. Grinberga L, Kleperis J (2008) Hydrogen sorption properties of metal hydride and glass phase. In: NATO Science for Peace and Security Series C: Environmental Security, pp 543–548

  73. Lesnicenoks P, Sivars A, Grinberga L, Kleperis J (2012) Hydrogen adsorption in zeolite studied with Sievert and thermogravimetric methods. IOP Conf Ser Mater Sci Eng 38:012060. https://doi.org/10.1088/1757-899X/38/1/012060

    Article  Google Scholar 

  74. Kleperis J, Lesnicenoks P, Grinberga L et al (2013) Zeolite as material for hydrogen storage in transport applications. Latv J Phys Tech Sci 50:59–64. https://doi.org/10.2478/lpts-2013-0020

    Article  CAS  Google Scholar 

  75. Lesnicenoks P, Zemitis J, Grinberga L et al (2017) Modified graphene sheet stacks for hydrogen binding. Mater Sci. https://doi.org/10.5755/j01.ms.23.1.13729

    Article  Google Scholar 

  76. Lesnicenoks P, Berzina A, Lukoševičš I et al (2017) Complex multilayer carbon structures for green energetics. Proc Est Acad Sci 66:403. https://doi.org/10.3176/proc.2017.4.26

    Article  Google Scholar 

  77. Fu P, Jia R, Kong C-P et al (2015) From determination of the fugacity coefficients to estimation of hydrogen storage capacity: a convenient theoretical method. Int J Hydrogen Energy 40:10908–10917. https://doi.org/10.1016/j.ijhydene.2015.07.005

    Article  CAS  Google Scholar 

  78. Gigorjeva L, Millers D, Grabis J, Jankoviča D (2011) Photoluminescence and photocatalytic activity of zinc tungstate powders. Open Phys 9:510–514. https://doi.org/10.2478/s11534-010-0122-9

    Article  CAS  Google Scholar 

  79. Knoks A, Kleperis J, Bajars G et al (2021) WO3 as additive for efficient photocatalyst binary system TiO2/WO3. Latv J Phys Tech Sci 58:24–34. https://doi.org/10.2478/lpts-2021-0043

    Article  CAS  Google Scholar 

  80. Liepina I, Bajars G, Gabrusenoks J et al (2012) Preparation and photoactivity of electrophoretic TiO2 coating film. IOP Conf Ser Mater Sci Eng 38:012059. https://doi.org/10.1088/1757-899X/38/1/012059

    Article  Google Scholar 

  81. Liepina I, Bajars G, Lusis A et al (2013) Preparation and characterization of nanostructured Fe-TiO 2 thin films produced by electrophoretic deposition. IOP Conf Ser Mater Sci Eng 49:012060. https://doi.org/10.1088/1757-899X/49/1/012060

    Article  CAS  Google Scholar 

  82. Liepina I, Bajars G, Rublans M et al (2015) Structure and photocatalytic properties of TiO2 -WO3 composites prepared by electrophoretic deposition. IOP Conf Ser Mater Sci Eng 77:012039. https://doi.org/10.1088/1757-899X/77/1/012039

    Article  CAS  Google Scholar 

  83. Lisovski O, Piskunov S, Zhukovskii YF, Bocharov D (2017) Quantum chemical simulations of titanium dioxide nanotubes used for photocatalytic water splitting. J Surf Investig X-ray, Synchrotron Neutron Tech 11:78–86. https://doi.org/10.1134/S1027451016050335

    Article  CAS  Google Scholar 

  84. Bocharov D, Piskunov S, Zhukovskii YF et al (2017) First principles modeling of 3d-metal doped three-layer fluorite-structured TiO2 (4,4) nanotube to be used for photocatalytic hydrogen production. Vacuum 146:562–569. https://doi.org/10.1016/j.vacuum.2017.05.002

    Article  CAS  Google Scholar 

  85. Lin Y-P, Isakoviča I, Gopejenko A et al (2021) Time-dependent density functional theory calculations of N- and S-doped TiO2 nanotube for water-splitting applications. Nanomaterials 11:2900. https://doi.org/10.3390/nano11112900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhukovskii YF, Piskunov S, Lisovski O et al (2016) Quantum chemical simulations of doped ZnO nanowires for photocatalytic hydrogen generation. Phys status solidi 253:2120–2128. https://doi.org/10.1002/pssb.201600452

    Article  CAS  Google Scholar 

  87. Lin Y-P, Polyakov B, Butanovs E et al (2021) Excited states calculations of MoS2@ZnO and WS2@ZnO two-dimensional nanocomposites for water-splitting applications. Energies 15:150. https://doi.org/10.3390/en15010150

    Article  CAS  Google Scholar 

  88. Sokolov M, Mastrikov YA, Zvejnieks G et al (2021) Water splitting on multifaceted SrTiO3 nanocrystals: computational study. Catalysts 11:1326. https://doi.org/10.3390/catal11111326

    Article  CAS  Google Scholar 

  89. Bajars G, Lagzdons J, Lusis A, Veispals A (1986) Glassy solid electrolyte for solid-state ion devices, USSR Patent Office, Patent No. 1400359

  90. Auksyalis S, Bajars G, Pitre K et al (1988) Electrical properties of HUO2PO4 × 4H2O polycrystals (HUP) in the frequency range 107–7.2 × 1010 Hz. Lith Phys Collect 28:757–762

    Google Scholar 

  91. Lagzdons L, Petrovskis G, Bajars G, Lagzdons J (1986) Antimonic acid hydrate solid proton electrolyte synthesis method, USSR Patent, Patent No. 13331117

  92. Vitins G, Bajars G, Vaivars G et al (1994) Conductivity and volume impedance of Na-beta/beta’’-alumina. Latv J Chem 1:78

    Google Scholar 

  93. Kanepe Z, Vitins A, Vitins G et al (1996) Conductivity studies of Na3Sc2(PO4)3, NaScP2O7, and LiScP2O7 ceramic samples by means of impedance technique. Latv J Chem 3–4:31

    Google Scholar 

  94. Vītiņš Ģ, Kaņepe Z, Vītiņš A et al (2000) Structural and conductivity studies in LiFeP 2 O 7, LiScP 2 O 7, and NaScP 2 O 7. J Solid State Electrochem 4:146–152. https://doi.org/10.1007/s100080050012

    Article  Google Scholar 

  95. Vītiņš Ģ, Ķizāne G, Lūsis A, Tīliks J (2002) Electrical conductivity studies in the system Li2TiO3-Li1.33Ti1.67O4. J Solid State Electrochem 6:311–319. https://doi.org/10.1007/s100080100239

    Article  CAS  Google Scholar 

  96. Petrovskis G, Lusis A, Fullbier H, Lobitz P (1991) Verfahren zur Herstellung von Protonenfestelektrolyten (method for preparing proton-conducting solid electrolytes), DD291865, Patent No

  97. Vaivars G, Kleperis J, Lusis A (1993) Antimonic acid hydrate xerogels as proton electrolytes. Solid State Ionics 61:317–321

    Article  CAS  Google Scholar 

  98. Vaivars G, Kleperis J, Lusis A (1992) Investigation of antimonic acid hydrates produced by the sol-gel method. Sov Electrochem 28:1176–1180

    Google Scholar 

  99. Vaivars G, Kleperis J, Azens A et al (1997) Proton conducting composite electrolytes based on antimonic acid. Solid State Ionics 97:365–368. https://doi.org/10.1016/S0167-2738(97)00049-0

    Article  CAS  Google Scholar 

  100. Granqvist C, Azens A, Hjelm A et al (1998) Recent advances in electrochromics for smart windows applications. Sol Energy 63:199–216. https://doi.org/10.1016/S0038-092X(98)00074-7

    Article  CAS  Google Scholar 

  101. Vaivars G, Azens A, Granqvist CG (1999) Proton conducting polymer composites for electrochromic devices. Solid State Ionics 119:269–273. https://doi.org/10.1016/S0167-2738(98)00513-X

    Article  CAS  Google Scholar 

  102. Vaivars G (2000) Polymeric nanocomposites with proton conducting hydrated particles for electrooptical systems. Mater Sci 6:68–72

    Google Scholar 

  103. Vaivars G, Furlani M, Mellander B-E, Granqvist CG (2003) Proton-conducting zirconium phosphate/poly(vinyl acetate)/glycerine gel electrolytes. J Solid State Electrochem 7:724–728. https://doi.org/10.1007/s10008-003-0391-y

    Article  CAS  Google Scholar 

  104. Vaivars G, Shan J, Gericke G, Linkov V (2005) Phosphorized zirconium oxide nanoparticles. Appl Organomet Chem 19:1096–1100. https://doi.org/10.1002/aoc.978

    Article  CAS  Google Scholar 

  105. Vaivars G, Mokrani T, Maxakatho N et al (2003) Inorganic direct methanol fuel cell. J Energy South Africa 47–50

  106. Vaivars G, Maxakato NW, Mokrani T et al (2004) Zirconium phosphate based inorganic direct methanol fuel cell. Mater Sci 10:162–165

    Google Scholar 

  107. Vaivars G, Mokrani T, Hendricks N, Linkov V (2004) Inorganic membranes based on zirconium phosphate for fuel cells. J Solid State Electrochem 8:882–885. https://doi.org/10.1007/s10008-004-0529-6

    Article  CAS  Google Scholar 

  108. Chikvaidze G, Gabrusenoks J, Kleperis J, Vaivars G (2007) Application of micro Raman spectroscopy to industrial FC membranes. J Phys Conf Ser 93:012026. https://doi.org/10.1088/1742-6596/93/1/012026

  109. Luo H, Vaivars G, Mathe M et al (2009) Proton conducting membrane prepared by cross-linking highly sulfonated peek for PEMFC application. In: ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, pp 723–728

  110. Luo H, Vaivars G, Mathe M (2009) Cross-linked PEEK-WC proton exchange membrane for fuel cell. Int J Hydrogen Energy 34:8616–8621. https://doi.org/10.1016/j.ijhydene.2009.08.024

    Article  CAS  Google Scholar 

  111. Luo H, Vaivars G, Mathe M (2010) Covalent-ionically cross-linked polyetheretherketone proton exchange membrane for direct methanol fuel cell. J Power Sources 195:5197–5200. https://doi.org/10.1016/j.jpowsour.2010.03.023

    Article  CAS  Google Scholar 

  112. Luo H, Vaivars G, Mathe M (2012) Double cross-linked polyetheretherketone proton exchange membrane for fuel cell. Int J Hydrogen Energy 37:6148–6152. https://doi.org/10.1016/j.ijhydene.2011.05.115

    Article  CAS  Google Scholar 

  113. Luo H, Vaivars G, Agboola B et al (2012) Anion exchange membrane based on alkali doped poly(2,5-benzimidazole) for fuel cell. Solid State Ionics 208:52–55. https://doi.org/10.1016/j.ssi.2011.11.029

    Article  CAS  Google Scholar 

  114. Garaev V, Kleperis J, Pavlovica S, Vaivars G (2012) Properties of the Nafion membrane impregnated with hydroxyl ammonium based ionic liquids. IOP Conf Ser Mater Sci Eng 38:012064. https://doi.org/10.1088/1757-899X/38/1/012064

    Article  Google Scholar 

  115. Lasmane L, Ausekle E, Vaivars G, Priksane A (2013) Acidic ionic liquids as composite forming additives for ion-conducting materials. IOP Conf Ser Mater Sci Eng 49:012039. https://doi.org/10.1088/1757-899X/49/1/012039

    Article  CAS  Google Scholar 

  116. Sprugis E, Vaivars G, Merijs Meri R (2019) A study of mechanical properties of polymer composite membranes with various ionic liquids at elevated temperatures. Mater Sci. https://doi.org/10.5755/j01.ms.25.1.18933

    Article  Google Scholar 

  117. Fedorenko D, Vaivars G (2020) Composite membranes of sulfonated poly(ether ether ketone) with active carbon: composite preparation and investigation of their properties for potential application for CO2 electrochemical reduction. Mater Sci 26:444–450. https://doi.org/10.5755/j01.ms.26.4.24000

    Article  Google Scholar 

  118. Sukhyi MP, Tomilo VI, Sukhyi KM et al (2020) Organo-montmorillonite modified by polyionenes for polymer composites. Chem Technol Appl Subst 3:187–190. https://doi.org/10.23939/ctas2020.02.187

  119. Fedorenko D, Vaivars G (2019) Different approaches in sulfonated poly (ether ether ketone) conductivity measurements. IOP Conf Ser Mater Sci Eng 503:012030. https://doi.org/10.1088/1757-899X/503/1/012030

    Article  CAS  Google Scholar 

  120. Hodakovska J, Kleperis J (2008) Sulfonated poly(ether-ether-ketone) polymer membranes for fuel cells. Latv J Phys Tech Sci 45:55–60. https://doi.org/10.2478/v10047-008-0029-z

    Article  CAS  Google Scholar 

  121. Hodakovska J, Kleperis J (2011) Surface relief, phase and surface potential investigations of composite polymer membranes using AFM. IOP Conf Ser Mater Sci Eng 23:012017. https://doi.org/10.1088/1757-899X/23/1/012017

    Article  CAS  Google Scholar 

  122. Hodakovska J, Kleperis J (2016) Sulfonated poly(ether-ether-ketone) and Nafion composite membrane with aluminium oxide additive for fuel cell applications. Polym Sci Ser A 58:167–171. https://doi.org/10.1134/S0965545X16020103

    Article  CAS  Google Scholar 

  123. Pajuste E, Reinholds I, Vaivars G et al (2022) Evaluation of radiation stability of electron beam irradiated Nafion® and sulfonated poly(ether ether ketone) membranes. Polym Degrad Stab 200:109970. https://doi.org/10.1016/j.polymdegradstab.2022.109970

    Article  CAS  Google Scholar 

  124. Stegemann H, Jabs G, Mittag H et al (1987) N-Alkylurotropiniumpolyiodide - Darstellung und Untersuchung der elektrischen und magnetischen Eigenschaften. Z Anorg Allg Chem 555:183–191. https://doi.org/10.1002/zaac.19875551220

    Article  CAS  Google Scholar 

  125. Mittag H, Cikmach P, Fullbier H et al (1989) Investigation of the electrical and magnetic properties of N-alkylurotropinium polyiodides. Elektrokhymia 25:802–804

    CAS  Google Scholar 

  126. Vitins G, West K (1997) Lithium intercalation into layered LiMnO2. J Electrochem Soc 144:2587–2592. https://doi.org/10.1149/1.1837869

    Article  CAS  Google Scholar 

  127. West K, Vitins G, Koksbang R (2000) Synthesis and host properties of tetragonal Li2Mn2O4 and Li2Co0.4Mn1.6O4. Electrochim Acta 45:3141–3149. https://doi.org/10.1016/S0013-4686(00)00395-9

    Article  CAS  Google Scholar 

  128. Vitins G, Raekelboom E, Weller M, Owen J (2003) Li2CuO2 as an additive for capacity enhancement of lithium ion cells. J Power Sources 119–121:938–942. https://doi.org/10.1016/S0378-7753(03)00236-2

    Article  CAS  Google Scholar 

  129. Spong AD, Vitins G, Owen JR (2005) A solution–precursor synthesis of carbon-coated LiFePO[sub 4] for Li-ion cells. J Electrochem Soc 152:A2376. https://doi.org/10.1149/1.2120427

    Article  CAS  Google Scholar 

  130. Roberts MR, Spong AD, Vitins G, Owen JR (2007) High throughput screening of the effect of carbon coating in LiFePO[sub 4] electrodes. J Electrochem Soc 154:A921. https://doi.org/10.1149/1.2763968

    Article  CAS  Google Scholar 

  131. Fung K-Z, Tsai S-Y, Ni C-T et al (2014) Fabrication of Li 4 Ti 5 O 12 spinel thin films for Li mirobattery applications. ECS Meet Abstr MA2014–02:431–431. https://doi.org/10.1149/MA2014-02/5/431

  132. Kucinskis G, Bajars G, Bikova K et al (2019) Microstructural influence on electrochemical properties of LiFePO4/C/reduced graphene oxide composite cathode. Russ J Electrochem 55:517–523. https://doi.org/10.1134/S1023193519060120

    Article  CAS  Google Scholar 

  133. Kucinskis G, Bajars G, Kleperis J (2013) Graphene in lithium ion battery cathode materials: a review. J Power Sources 240:66–79. https://doi.org/10.1016/j.jpowsour.2013.03.160

    Article  CAS  Google Scholar 

  134. Padhi AK, Nanjundaswarny K, Goodenough J (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188. https://doi.org/10.1149/1.1837571

    Article  CAS  Google Scholar 

  135. Amin R, Maier J, Balaya P et al (2008) Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique. Solid State Ionics 179:1683–1687. https://doi.org/10.1016/j.ssi.2008.01.079

    Article  CAS  Google Scholar 

  136. Ohmer N, Fenk B, Samuelis D et al (2015) Phase evolution in single-crystalline LiFePO4 followed by in situ scanning X-ray microscopy of a micrometre-sized battery. Nat Commun 6:6045. https://doi.org/10.1038/ncomms7045

    Article  CAS  PubMed  Google Scholar 

  137. Lim J, Li Y, Alsem DH et al (2016) Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles. Science 353:566–571. https://doi.org/10.1126/science.aaf4914

    Article  CAS  PubMed  Google Scholar 

  138. Katkevics J, Viksna A, Zicmanis A, Vaivars G (2011) Electrical impedance spectroscopy of ionic liquid 1-ethyl-3-methylimidazolium methanesulfonate (ECOENG™ 110). Solid State Ionics 188:114–117. https://doi.org/10.1016/j.ssi.2010.11.013

    Article  CAS  Google Scholar 

  139. Garaev V, Pavlovica S, Reinholds I, Vaivars G (2013) Mechanical properties and XRD of Nafion modified by 2-hydroxyethylammonium ionic liquids. IOP Conf Ser Mater Sci Eng 49:012058. https://doi.org/10.1088/1757-899X/49/1/012058

    Article  CAS  Google Scholar 

  140. Zicmanis A, Brica S, Vaivars G et al (2019) Ionic liquids and their modification with lithium salts - synthesis and studies. In: Nanostructured composite materials for energy storage and conversion. LU Akademiskais apgads, pp 54–68

  141. Tapia-Ruiz N, Armstrong AR, Alptekin H et al (2021) 2021 roadmap for sodium-ion batteries. J Phys Energy 3:031503. https://doi.org/10.1088/2515-7655/ac01ef

    Article  CAS  Google Scholar 

  142. Eglitis RI, Borstel G (2005) Towards a practical rechargeable 5 V Li ion battery. Phys Status Solidi 202:R13–R15. https://doi.org/10.1002/pssa.200409083

    Article  CAS  Google Scholar 

  143. Eglitis RI (2015) Theoretical prediction of the 5 V rechargeable Li ion battery using Li2CoMn3O8 as a cathode. Phys Scr 90:094012. https://doi.org/10.1088/0031-8949/90/9/094012

    Article  CAS  Google Scholar 

  144. Zhukovskii YF, Balaya P, Kotomin EA, Maier J (2006) Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations. Phys Rev Lett 96:058302. https://doi.org/10.1103/PhysRevLett.96.058302

    Article  CAS  PubMed  Google Scholar 

  145. Balaya P, Bhattacharyya AJ, Jamnik J et al (2006) Nano-ionics in the context of lithium batteries. J Power Sources 159:171–178. https://doi.org/10.1016/j.jpowsour.2006.04.115

    Article  CAS  Google Scholar 

  146. Zhukovskii YF, Kotomin EA, Balaya P, Maier J (2008) Enhanced interfacial lithium storage in nanocomposites of transition metals with LiF and Li2O: comparison of DFT calculations and experimental studies. Solid State Sci 10:491–495. https://doi.org/10.1016/j.solidstatesciences.2007.12.030

    Article  CAS  Google Scholar 

  147. Vanags M, Kleperis J, Bajars G, Lusis A (2007) Water electrolysis using electrodes with modified surface/volume. J Phys Conf Ser 93:012025. https://doi.org/10.1088/1742-6596/93/1/012025

    Article  CAS  Google Scholar 

  148. Vanags M, Kleperis J, Bajars G (2011) Electrolyses model development for metal/electrolyte interface: testing with microrespiration sensors. Int J Hydrogen Energy 36:1316–1320. https://doi.org/10.1016/j.ijhydene.2010.07.100

    Article  CAS  Google Scholar 

  149. Vanags M, Kleperis J, Bajars G (2011) Separation of charging and charge transition currents with inductive voltage pulses. Latv J Phys Tech Sci. https://doi.org/10.2478/v10047-011-0020-y

    Article  Google Scholar 

  150. Vanags M, Kleperis J, Bajars G (2012) Water electrolysis with inductive voltage pulses. In: Electrolysis. InTech, pp 19–44

  151. Vanags M, Aizpurietis P, Bajars G et al (2012) Water electrolysis with DC pulses and plasma discharge. Int Sci J Altern Energy Ecol 9:21–27

    Google Scholar 

  152. Aizpurietis P, Vanags M, Kleperis J, Bajars G (2013) Ni–Al protective coating of steel electrodes in Dc electrolysis for hydrogen production / Ni–Al Pārklājuma Ietekme Uz Tērauda Elektrodiem Līdzstrāvas Elektrolīzē Ūdeņraža Ražošanai. Latv J Phys Tech Sci 50:53–59. https://doi.org/10.2478/lpts-2013-0012

    Article  CAS  Google Scholar 

  153. Vanags M, Nemcevs V, Kleperis J (2008) Water-powered heat and electricity supply system, Latvian Patent Office, Patent No. lv 13710

  154. Lisovski O, Piskunov S, Bocharov D et al (2022) CO2 and CH2 adsorption on copper-decorated graphene: predictions from first principle calculations. Crystals 12:194. https://doi.org/10.3390/cryst12020194

    Article  CAS  Google Scholar 

  155. Lesnicenoks P, Knoks A, Piskunov S et al (2022) N-graphene sheet stacks/Cu electrocatalyst for CO2 reduction to ethylene. Electrochem 3:229–238. https://doi.org/10.3390/electrochem3020015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.B. and G.K. acknowledge funding from the Latvian Council of Science (lzp-2020/1–0425) for their contributions in the chapter on Li-ion battery research. Institute of Solid-State Physics, University of Latvia as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Framework Program H2020-WIDESPREAD-01–2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the article conception and design. The main authors of original drafts of chapters are: Chapter 1, J. Kleperis, G. Bajārs, and J. Purāns; Chapter 2, J. Kleperis and J. Purāns; Chapter 3, G. Bajārs and J. Kleperis; Chapter 4, J. Kleperis and L. Grīnberga; Chapter 5, L. Grīnberga, and J. Kleperis; Chapter 6, L. Grīnberga and G. Bajārs; Chapter 7, G. Vaivars, G. Bajārs, and Ģ. Vītiņš; Chapter 8, G. Vaivars and J. Kleperis; Chapter 9, G. Kučinskis, Ģ. Vītiņš, and G. Bajārs; Chapter 10, J. Kleperis and G. Bajārs); review and editing, G. Kučinskis and L. Grīnberga; supervision, G. Bajārs and J. Kleperis). All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gunārs Bajārs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleperis, J., Bajārs, G., Grīnberga, L. et al. From electrochromic phenomena to energy harvesting and storage—an overview of solid state ionics research at the Institute of Solid State Physics, University of Latvia. J Solid State Electrochem 27, 1641–1660 (2023). https://doi.org/10.1007/s10008-023-05419-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05419-8

Keywords

Navigation