Skip to main content
Log in

Passivating reactions at a microdisk electrode as a model of passivation at a microparticle: theory and experiment

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We have described the use of a microelectrode to simulate a passivating reaction taking place at a micro or nanoparticle. Reaction at the microelectrode is considered to lead to either diffusion of the product back into solution or the formation of a surface-bound species. A kinetic parameter describes the balance between the two processes. Linear sweep voltammograms were simulated for the first and second scan under different values of the kinetic parameter. These simulations were used to derive an empirical equation relating the change in peak height to the passivation kinetics. The equation was used to examine the oxidation of NADH, phenol and ascorbic acid at a Pt microelectrode, and the oxidation of phenol at alloy microelectrodes of different Pt:Rh content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Herrero E, Chrzanowski W, Wieckowski A (1995) Dual path mechanism in methanol electrooxidation on a platinum electrode. J Phys Chem 99(25):10423–10424

    Article  CAS  Google Scholar 

  2. Marković NM, Gasteiger HA, Ross PN Jr (1995) Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces. Electrochim Acta 40(1):91–98

    Article  Google Scholar 

  3. Ernst H, Knoll M (2001) Electrochemical characterisation of uric acid and ascorbic acid at a platinum electrode. Anal Chim Acta 449(1–2):129–134

    Article  CAS  Google Scholar 

  4. Bartlett PN, Tebbutt P, Tyrrell CH (1992) Electrochemical immobilization of enzymes, 3 Immobilization of glucose oxidase in thin films of electrochemically polymerized phenols. Anal Chem 64(2):138–142

    Article  CAS  Google Scholar 

  5. Reynolds ER, Yacynych AM (1994) Direct sensing platinum ultramicrobiosensors for glucose. Biosens Bioelectron 9(4–5):283–293

    Article  CAS  PubMed  Google Scholar 

  6. Samec Z, Bresnahan WT, Elving PJ (1982) Theoretical analysis of eletrochemical reactions involving two successive one-electron transfers with dimerization of intermediate-applicaiton to NAD+/NADH redox couple. J Electroanal Chem Interfac Electrochem 133(1):1–23

    Article  CAS  Google Scholar 

  7. Beden B, Largeaud F, Kokoh KB, Lamy C (1996) Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: Identification of reactive intermediates and reaction products. Electrochim Acta 41(5):701–709

    Article  CAS  Google Scholar 

  8. Soriaga MP, Binamira-Soriaga E, Hubbard AT, Benziger JB, Peter Pang KW (1985) Surface coordination chemistry of platinum studied by thin-layer electrodes. Adsorption, orientation, and mode of binding of aromatic and quinonoid compounds. Inorg Chem 24(1):65–73

  9. Zhong C-J, Porter MD (1997) Fine structure in the voltammetric desorption curves of alkanethiolate monolayers chemisorbed at gold. J Electroanal Chem 425(1–2):147–153

    Article  CAS  Google Scholar 

  10. Contractor AQ, Lal H (1979) Two forms of chemisorbed sulfur on platinum and related studies. J Electroanal Chem Interfac Electrochem 96(2):175–181

    Article  Google Scholar 

  11. Xu K, Pierce DT, Li A, Zhao JX (2008) Nanocatalysts in direct methanol fuel cell applications. Synth React Inorg Metal-Org Nano-Met Chem 38(4):394–399

    Article  CAS  Google Scholar 

  12. Beil SB, Pollok D, Waldvogel SR (2021) Reproducibility in electroorganic synthesis—myths and misunderstandings. Angew Chem Int Ed 60(27):14750–14759

    Article  CAS  Google Scholar 

  13. Hanssen BL, Siraj S, Wong DKY (2016) Recent strategies to minimise fouling in electrochemical detection systems. Rev Anal Chem 35(1):1–28

    Article  CAS  Google Scholar 

  14. Nishigaki J, Ishida T, Honma T, Haruta M (2020) Oxidation of β-nicotinamide adenine dinucleotide (NADH) by Au cluster and nanoparticle catalysts aiming for coenzyme regeneration in enzymatic glucose oxidation. ACS Sustainable Chem Eng 8(28):10413–10422

    Article  CAS  Google Scholar 

  15. Lalaoui N, Gentil K, Ghandari I, Cosnier S, Giroud F (2022) Nitrobenzoic acid-functionalized gold nanoparticles: DET promoter of multicopper oxidases and electrocatalyst for NAD-dependent glucose dehydrogenase. Electrochim Acta 408 article 139894

  16. Yang H, Ge Y, Wen G, Song W, Zheng K (2022) Synthesis of copper nanoparticles in the ordered mesoporous carbon (Cu@OMC) for glucose detection. J Electron Mater 51:5005–5014

    Article  CAS  Google Scholar 

  17. Hernández-Ramírez D, Mendoza-Huizar LH, Galán-Vidal CA, Aguilar-Lira GY, Álvarez-Romero GA (2022) Development of a non-enzymatic glucose sensor based on Fe2O3 nanoparticles-carbon paste electrodes. J Electrochem Soc 169: article 067507

  18. Juárez-Marmolejo L, Maldonado-Teodocio B, Montesde Oca-Yemha MG, Romero-Romo M, Arce-Estrada EM, Ezeta-Mejía A, Ramírez-Silva MT, Mostany J, Palomar-Pardavé M (2022) Electrocatalytic oxidation of formic acid by palladium nanoparticles electrochemically synthesized from a deep eutectic solvent. Cat Today 394–396:190–197

    Article  Google Scholar 

  19. Tang H, Hao H, Zhu J, Guan X, Qiu B, Li Y (2019) Single Pt–Pd bimetallic nanoparticle electrode: controllable fabrication and unique electrocatalytic performance for the methanol oxidation reaction. Chem Eur J 25(19):4935–4940

    Article  CAS  PubMed  Google Scholar 

  20. Sakthinathan S, Thagavelu K, Tamizhdurai P, Chiu T-W (2020) Activated graphite supported tunable Au–Pd bimetallic nanoparticle composite electrode for methanol oxidation. J Nanosci Nanotechnol 20(10):6376–6384

    Article  CAS  PubMed  Google Scholar 

  21. Singh AK, Xu Q (2013) Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5(3):652–676

    Article  CAS  Google Scholar 

  22. Briega-Martos V, Costa-Figueiredo M, Orts JM, Rodes A, Koper MTM, Herrero E, Feliu JM (2019) Acetonitrile adsorption on pt single-crystal electrodes and its effect on oxygen reduction reaction in acidic and alkaline aqueous solutions. J Phys Chem C 123(4):2300–2313

    Article  CAS  Google Scholar 

  23. Belding SR, Dickinson EJF, Compton RG (2009) Diffusional cyclic voltammetry at electrodes modified with random distributions of electrocatalytic nanoparticles: theory. J Phys Chem C 113(25):11149–11156

    Article  CAS  Google Scholar 

  24. Bhugun I, Saveant JM (1995) Derivatization of surfaces and self-inhibition in irreversible electrochemical reactions: cyclic voltammetry and preparative-scale electrolysis. J Electroanal Chem 395(1–2):127–131

    Article  Google Scholar 

  25. Elving PJ, Bresnahan WT, Moiroux J, Samec Z (1982) NAD/NADH as a model redox system: mechanism, mediation, modification by the environment. Bioelectrochem Bioenerg 9(3):365–378

    Article  CAS  Google Scholar 

  26. Chevallier FG, Klymenko OV, Jiang L, Jones TGJ, Compton RG (2005) Mathematical modelling and numerical simulation of adsorption processes at microdisk electrodes. J Electroanal Chem 574(2):217–237

    Article  CAS  Google Scholar 

  27. Aoki K (1993) Theory of ultramicroelectrodes. Electroanalysis 5(8):627–639

    Article  CAS  Google Scholar 

  28. Gavaghan DJ (1998) An exponentially expanding mesh ideally suited to the fast and efficient simulation of diffusion processes at microdisc electrodes. 3. Application to voltammetry. J Electroanal Chem 456(1–2):25–35

  29. Saito Y (1968) A theoretical study on the diffusion current at the stationary electrodes of circular and narrow band types. (1968) Rev Polarogr 15(6):177–187

  30. Aoki K, Akimoto K, Tokuda K, Matsuda H, Osteryoung J (1984) Linear sweep voltammetry at very small stationary disk electrodes. Electroanal Chem 171(1–2):219–230

    Article  CAS  Google Scholar 

  31. Konopka SJ, McDuffie B (1970) Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal Chem 42(14):1741–1746

    Article  CAS  Google Scholar 

  32. Robinson D, Anderson JE, Lin J-L (1990) Measurement of diffusion coefficients of some indoles and ascorbic acid by flow injection analysis. J Phys Chem 94(2):1003–1005

    Article  CAS  Google Scholar 

  33. Niesner R, Heintz A (2000) Diffusion coefficients of aromatics in aqueous solution. J Chem Eng Data 45(6):1121–1124

    Article  CAS  Google Scholar 

Download references

Funding

The project is funded by the National Research Council of Thailand (NRCT), code no.: NRCT5-RSA63026-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mithran Somasundrum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 48 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiengjen, K., Phanthong, C., Surareungchai, W. et al. Passivating reactions at a microdisk electrode as a model of passivation at a microparticle: theory and experiment. J Solid State Electrochem 27, 1241–1247 (2023). https://doi.org/10.1007/s10008-023-05399-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05399-9

Keywords

Navigation