Skip to main content
Log in

Triethanolamine concentration effect on electrodeposited SnS thin films properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

SnS thin films were electrodeposited onto ITO-coated glass substrates using one-step potentiostatic electrodeposition in a bath solution consisting of tin chloride (SnCl2) and sodium thiosulfate (Na2S2O3) for different concentrations of triethanolamine complexing agent (TEA). For the kinetic study, the charge transfer coefficient αc, the diffusion coefficient D, and the potential dependent cathodic rate kc were deduced by analyzing cyclic voltammograms and potentiostatic current transients. The electrochemical study showed that the charge transfer controls the electrodeposition of SnS in the presence of TEA. The effect of triethanolamine addition on the structural, morphological, compositional, and optical properties was studied using XRD, SEM, EDX, Raman, and UV–visible techniques. FV All samples crystallize in the orthorhombic SnS phase. It was found that the addition of TEA not only affects the surface morphology of the films by reducing the grain size, but also slows down the deposition of tin and thus improves the stoichiometry of the film. The vibrational modes of the tin chalcogenides SnS, SnS2, and Sn2S3 helped in the identification of the sample’s chemical structure. All samples displayed low transmittance in the visible range, which decreases with the increase of the agent concentration. The band gap was identified to be direct and increases with TEA in correlation with structural parameters. The optimal properties and the stoichiometry were reached for the concentration ratio [Sn:S:TEA] = [1:4:1] and were found in good agreement with the calculated electrochemical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Battaglia C, Cuevas A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9. https://doi.org/10.1039/c5ee03380b

  2. Pratap B, Kumar S, Kumar P (2021) PV cell materials and technologies : analyzing the recent developments. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.01.003

    Article  Google Scholar 

  3. Liu X, Li X, Li X, Li Q, Zhang D, Yu N, Wang S (2022) Fabrication of Cu2SnS3 thin film solar cells via a sol-gel technique in air. Phys B Condens Matter 6272022. https://doi.org/10.1016/j.physb.2021.413613

  4.  Ali N, Hussain A, Ahmed R, Wang MK, Zhao C, Haq BU, Fu YQ (2016) Advances in nanostructured thin film materials for solar cell applications. Renew Sustain Energy Rev 59. https://doi.org/10.1016/j.rser.2015.12.268

  5. Zhao X, Davis LM, Lou X, Kim SB, Uličná S, Jayaraman A, Yang C, Schelhas LT, Gordon R (2021) Study of the crystal structure of SnS thin films by atomic layer deposition. AIP Adv 11. https://doi.org/10.1063/5.0032782

  6. Banotra A, Padha N (2019) Facile growth of SnS and SnS0.40Se0.60 thin films as an absorber layer in the solar cell structure. Mater Today Proc 26. https://doi.org/10.1016/j.matpr.2019.11.154

  7. Guo Y, Wang X, Lei H, Tan Z, Chen J (2019) Characterization of evaporated tin sulfide and its application for hybrid solar cell. Mater Lett 251. https://doi.org/10.1016/j.matlet.2019.05.036

  8. Higareda-Sanchez A, Mis-Fernandez R, Rimmaudo I, Camacho-Espinosa E, Pena JL (2021) Evaluation of pH and deposition mechanisms effect on tin sulfide thin films deposited by chemical bath deposition. Superlattices Microstruct 151. https://doi.org/10.1016/j.spmi.2021.106831

  9. Joseph A, Anjitha CR, Aravind A, Aneesh PM (2020) Structural, optical and magnetic properties of SnS2 nanoparticles and photo response characteristics of p-Si/n-SnS2heterojunction diode. Appl Surf Sci 528. https://doi.org/10.1016/j.apsusc.2020.146977

  10. Sebastian S, Kulandaisamy I, Valanarasu S, Shkir M, Ganesh V, Yahia IS, Kim HS, Vikraman D (2021) Physical and electrical properties’ evaluation of SnS:Cu thin films. Surf Eng 37. https://doi.org/10.1080/02670844.2020.1754623

  11. Voznyi A, Kosyak V, Yeromenko Y, Keller J, Bērziņa A, Shamardin A, Iatsunskyi I, Shpetnyi I, Plotnikov S, Opanasyuk A (2020) Close-spaced sublimation of SnS absorber layers and SnS / CdS heterojunction solar cells with Mo and Ti back metal contacts. Thin Solid Films 709. https://doi.org/10.1016/j.tsf.2020.138153

  12. Choi Y, Park H, Lee N, Kim B, Lee J, Lee G, Jeon H (2022) Deposition of the tin sulfide thin films using ALD and a vacuum annealing process for tuning the phase transition. J Alloys Compd 896. https://doi.org/10.1016/j.jallcom.2021.162806

  13. El Otmani R, El Manouni A, Almaggoussi A, Rajira A, Abounadi A, Khadiri ME, Benzakour J (2021) Chelating agent effect on optical properties of SnS films and an output characteristics simulation of based solar cells. Mater Today Proc 51. https://doi.org/10.1016/j.matpr.2021.02.647

  14. Cupid DM, Rezqita A, Glibo A, Artner M, Bauer V, Hamid R, Jahn M, Flandorfer H (2021) Understanding and modelling the thermodynamics and electrochemistry of lithiation of tin (IV) sulfide as an anode active material for lithium ion batteries. Electrochim Acta 375. https://doi.org/10.1016/j.electacta.2021.137936

  15. Banotra A, Padha N (2020) SnxSy MSELD stack thin films: processing, characteristics and devices for photonic applications. Sol Energy 211. https://doi.org/10.1016/j.solener.2020.10.005

  16. Yu L, Zunger A (2012) Identification of potential photovoltaic absorbers based on first principles spectroscopic screening of materials. Phys Rev Lett 108. https://doi.org/10.1103/PhysRevLett.108.068701

  17. Sinsermsuksakul P, Sun L, Lee SW, Park HH, Kim SB, Yang C, Gordon RG (2014) Overcoming efficiency limitations of SnS-based solar cells. Adv Energy Mater 4. https://doi.org/10.1002/aenm.201400496

  18. Ho TT, Jokar E, Quadir S, Chen RS, Liu FC, Chen CY, Chen KH, Chen LC (2022) Enhancing the photovoltaic properties of SnS-Based solar cells by crystallographic orientation engineering. Sol Energy Mater Sol Cells 236. https://doi.org/10.1016/j.solmat.2021.111499

  19. Pawar PS, Neerugatti KE, Heo J (2021) Effect of precursor concentration and post-annealing temperature on ( 040 ) oriented tin sulfide thin films deposited on SLG / Mo substrates by spin coating. Curr Appl Phys 21. https://doi.org/10.1016/j.cap.2020.10.009

  20. Banai RE, Horn MW, Brownson JRS (2016) A review of tin (II) monosulfide and its potential as a photovoltaic absorber. Sol Energy Mater Sol Cells 150:112–129. https://doi.org/10.1016/j.solmat.2015.12.001

    Article  CAS  Google Scholar 

  21. Boubakri A, Jouidri A, Koumya Y, Rajira A, Almaggoussi A, Abounadi A (2021) An output characteristics simulation of SnS based solar cells. Mater Today Proc 51:2047–2052. https://doi.org/10.1016/j.matpr.2021.07.428

    Article  CAS  Google Scholar 

  22. Cheraghizade M, Jamali-Sheini F (2022) Photovoltaic behavior of SnS solar cells under temperature variations. Optik (Stuttg) 254(September 2021):168635. https://doi.org/10.1016/j.ijleo.2022.168635

  23. Otmani RE, Almaggoussi A, Rajira A, Labrini M, Abounadi A, Manouni AE, Khadiri ME, Benzakour J, Haskouri JE, Murcia-Mascaros S (2021) Towards a stoichiometric electrodeposition of SnS. Appl Phys AMater Sci Process 127. https://doi.org/10.1007/s00339-020-04165-2

  24. Kafashan H, Jamali-Sheini F, Ebrahimi-Kahrizsangi R, Yousefi R (2016) Influence of growth conditions on the electrochemical synthesis of SnS thin films and their optical properties. Int J Miner Metall Mater 23:348–357. https://doi.org/10.1007/s12613-016-1244-x

    Article  CAS  Google Scholar 

  25. Kihal R, Rahal H, Affoune AM, Ghers M (2017) Electrodeposition of SnS thin film solar cells in the presence of sodium citrate. J Electrochem Sci Technol 8. https://doi.org/10.5229/JECST.2017.8.3.206

  26. González-Velasco J (1994) The linear sweep voltametric method: an application to the study of reversible and irreversible processes. Electroanalysis 6:711–724. https://doi.org/10.1002/elan.1140060902

    Article  Google Scholar 

  27. Castrillejo Y, Bermejo MR, Martínez AM, Díaz AP (2003) Electrochemical behavior of lanthanum and yttrium ions in two molten chlorides with different oxoacidic properties: the eutectic LiCl-KCl and the equimolar mixture CaCl2-NaCl. J Min Metall Sect B Metall 39. https://doi.org/10.2298/jmmb0302109c

  28. Barry FJ, Cunnane VJ (2002) Synergistic effects of organic additives on the discharge, nucleation and growth mechanisms of tin at polycrystalline copper electrodes. J Electroanal Chem 537. https://doi.org/10.1016/S0022-0728(02)01266-4

  29. Alvarez AE, Salinas DR (2010) Formation of Cu/Pd bimetallic crystals by electrochemical deposition. Electrochim Acta 55. https://doi.org/10.1016/j.electacta.2010.01.076

  30. Fletcher S, Halliday CS, Gates D, Westcott M, Lwin T, Nelson G (1983) The response of some nucleation/growth processes to triangular scans of potential. J Electroanal Chem 159. https://doi.org/10.1016/S0022-0728(83)80627-5

  31. Chang B (2018) Singular point of voltammetric impedance data and its application in analyzing voltammetry data. 9. https://doi.org/10.5229/JECST.2018.9.2.149

  32. Bakkali S, Touir R, Cherkaoui M, Touhami ME (2015) Influence of S-dodecylmercaptobenzimidazole as organic additive on electrodeposition of tin. Surf Coatings Technol 261. https://doi.org/10.1016/j.surfcoat.2014.11.003

  33. Bakkali S, Cherkaoui M, Warad I, Zarrouk AM (2021) Investigation on tin electrodeposition from sulphuric acid medium. Anal Bioanal Electrochem 13

  34. Compton RG, Banks CE (2011) Understanding voltammetry: problems and solutions. Imperial College Press

  35. Rudnik E (2013) Effect of anions on the electrodeposition of tin from acidic gluconate baths. Ionics 19. https://doi.org/10.1007/s11581-012-0819-4.

  36. Torrent-Burgués J, Guaus E (2005) Electrodeposition of tin from tartrate solutions. Port Electrochim Acta 23. https://doi.org/10.4152/pea.200504471

  37. De Leon A, Rocha-Alonso F, Velázquez EF, Castillo SJ, Apolinar-Iribe A (2013) A comparison between polyethyleneimine and triethanolamine as complexing agents for PbS: theoretical perspectives. Chalcogenide Letters 10:555–564

    Google Scholar 

  38. Ghazali A, Zainal Z, Hussein MZ, Kassim A (1998) Cathodic electrodeposition of SnS in the presence of EDTA in aqueous media. Sol Energy Mater Sol Cells 55:237–249. https://doi.org/10.1016/S0927-0248(98)00106-8

    Article  CAS  Google Scholar 

  39. Cheng S, He Y, Chen G (2008) Structure and properties of SnS films prepared by electrodeposition in presence of EDTA. Mater Chem Phys 110. https://doi.org/10.1016/j.matchemphys.2008.03.004

  40. Zainal Z, Hussein MZ, Ghazali A (1996) Cathodic electrodeposition of SnS thin films from aqueous solution. Sol Energy Mater Sol Cells 40. https://doi.org/10.1016/0927-0248(95)00157-3

  41. Riveros et al (2019) Electrodeposition of single phase SnS thin films : effect of electrolytic bath temperature on the final film properties. 166(2):44–51. https://doi.org/10.1149/2.0661902jes

  42. Takeuchi K, Ichimura M, Arai E, Yamazaki Y (2003) SnS thin films fabricated by pulsed and normal electrochemical deposition. Sol Energy Mater Sol Cells 75:427–432. https://doi.org/10.1016/S0927-0248(02)00192-7

    Article  CAS  Google Scholar 

  43. Sato N, Ichimura M, Arai E, Yamazaki Y (2005) Characterization of electrical properties and photosensitivity of SnS thin films prepared by the electrochemical deposition method. Sol Energy Mater Sol Cells 85:153–165. https://doi.org/10.1016/j.solmat.2004.04.014

    Article  CAS  Google Scholar 

  44. Bento FR, Mascaro LH (2002) Analysis of the initial stages of electrocrystallization of Fe, Co and Fe-Co alloys in chloride solutions. J Braz Chem Soc 13. https://doi.org/10.1590/S0103-50532002000400015

  45. Palomar-Pardavé M, Miranda-Hernández M, González I, Batina N (1998) Detailed characterization of potentiostatic current transients with 2D-2D and 2D-3D nucleation transitions. Surf Sci 399. https://doi.org/10.1016/S0039-6028(97)00813-3

  46. Scharifker B, Hills G (1982) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28

  47. Borresen B, Haarberg GM, Tunold R (1997) Electrodeposition of magnesium from halide melts-charge transfer and diffusion kinetics. Electrochem Acta 42. PII: S0013–4&36(%)00322–2

  48. Pletcher JRD, Greff R, Peat R, Peter LM (2001) Instrumental methods in electrochemistry. https://doi.org/10.1533/9781782420545

  49. Manikandan K, Mani P, Dilip CS, Valli S, Inbaraj PF, Prince JJ (201) Effect of complexing agent TEA: the structural, morphological, topographical and optical properties of FexSx nano thin films deposited by SILAR technique. Appl Surf Sci 288. https://doi.org/10.1016/j.apsusc.2013.09.118

  50. Ho TT, Jokar E, Quadir S, Chen RS, Liu FC, Chen CY, Chen KH, Chen LC (2022) Enhancing the photovoltaic properties of SnS-Based solar cells by crystallographic orientation engineering. Sol Energy Mater Sol Cells 236. https://doi.org/10.1016/j.solmat.2021.111499

  51. El Masaoudi H, Benabdallah I, Jaber B, Laghzizil A, Benaissa M (2020) Size control of Ag3PO4 nanoparticles using monoethanolamine and oleylamine chelating agents. https://doi.org/10.22052/JNS.2020.02.015

  52. Bezerra JB, Matos RS, Zucolotto B, Pedra PP, Ferreira NS (2018) Effects of different complexing agents on the physical properties of ZnO nanoparticles. Mater Sci Technol. https://doi.org/10.1080/02670836.2018.1558598

    Article  Google Scholar 

  53. Baby BH, Mohan DB (2018) Phase formation study of SnS nanoparticles synthesized through PVP assisted polyol method. IOP Conf Ser Mater Sci Eng 360. https://doi.org/10.1088/1757-899X/360/1/012003

  54. Reddy K, Devika M, Gunasekhar KR (2014) Stable and low resistive zinc contacts for SnS based optoelectronic devices. Thin Solid Films 558:326–329. https://doi.org/10.1016/j.tsf.2014.02.083

  55. Reddy TS, Kumar MCS (2016) Co-evaporated SnS thin films for visible light photodetector applications. RSC Adv 6:95680–95692. https://doi.org/10.1039/c6ra20129f

    Article  CAS  Google Scholar 

  56. Guc M, Andrade-Arvizu J, Ahmet IY, Oliva F, Placidi M, Alcobé X, Saucedo E, Pérez-Rodríguez A, Johnson AL, Izquierdo-Roca V (2020) Structural and vibrational properties of α- and π-SnS polymorphs for photovoltaic applications. Acta Mater 183. https://doi.org/10.1016/j.actamat.2019.11.016

  57. Engelken RD, McCloud H (1987) Method for electroless and vapor deposition of thin films of three tin sulfide phases on conductive and nonconductive substrates. US Patent No. 4 681(77). Washington, DC: U.S. Patent and Trademark Office

  58. Chaki SH, Deshpande MP, Trivedi DP, Tailor JP, Chaudhary MD, Mahato K (2013) Wet chemical synthesis and characterization of SnS2 nanoparticles. Applied Nanoscience (Switzerland) 3:189–195. https://doi.org/10.1007/s13204-012-0123-7

    Article  CAS  Google Scholar 

  59. Gedi AS, Reddy VRM (2019) Preparation of single-phase SnS and SnS2 thin films for optoelectronic applications. Coatings 9(10):1–11

  60. Gedi S, Reddy VR, Pejjai B, Park C, Jeon CW, Kotte TR (2017) Studies on chemical bath deposited SnS2 films for Cd-free thin film solar cell. Ceramics Int 43(4):3713–3719. https://doi.org/10.1016/j.ceramint.2016.11.219

  61. Pawar BS, Pawar SM, Shin SW, Choi DS, Park CJ, Kolekar SS, Kim JH (2010) Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films. Appl Surf Sci 257. https://doi.org/10.1016/j.apsusc.2010.09.016

  62. Mani P, Manikandan K, Prince JJ (2016) Influence of molar concentration on triethanolamine (TEA) added tin sulfide (SnS) thin films by SILAR method. J Mater Sci Mater Electron 27. https://doi.org/10.1007/s10854-016-4963-x

  63. Sahin B, Aydin R (2018) SILAR derived CdO films: Effect of triethanolamine on the surface morphology and optical bandgap energy. Phys B Condens Matter 541. https://doi.org/10.1016/j.physb.2018.04.043

  64. Xu Z, Chen Y (2011) Synthesis of SnS thin films from nano-multilayer technique. Energy Procedia 10. https://doi.org/10.1016/j.egypro.2011.10.184

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rajira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boubakri, A., Koumya, Y., Rajira, A. et al. Triethanolamine concentration effect on electrodeposited SnS thin films properties. J Solid State Electrochem 27, 1061–1074 (2023). https://doi.org/10.1007/s10008-023-05394-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05394-0

Keywords

Navigation