Skip to main content
Log in

Electrostatic-thermodynamic-kinetic (ELTHEKI) modeling of the coupled \(\text {Ni}\)/\(\text {Ni}\text {O}\)/water system, under physico-chemical conditions of pressurized water reactors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present paper, we develop an electrostatic-thermodynamic-kinetic (ELTHEKI) model for studying the behavior of the specific \(\text {Ni}\)/\(\text {Ni}\text {O}\)/\(\text {H}_2\text {O}\) system, encountered in the pressurized water reactor (PWR) core. The ELTHEKI model proposes a coupled approach to describe the growth and dissolution/precipitation of the nickel oxide, under the PWR operating conditions (high temperature and alkaline pH). The electrostatic-thermodynamic-kinetic coupled modeling figures in the interfacial reaction kinetics, given by the modified Butler-Volmer (BV) law. It is expressed as a function of a composition gradient depending on the equilibrium concentration of the charge carrier, the interfacial potential drop, and the kinetic constant. Across the oxide film, nickel vacancies and holes are transported according to the Nernst-Planck (NP) equation, i.e., under concentration and potential gradients. Following the Point Defect Model (PDM), the electric field induced by charge carriers is assumed to be homogeneous within the oxide film. However, in the present study, the electric field is modeled using the Gauss law and the Helmholtz model, including also the potential drop of zero charge. Here, we propose a theoretical method for the calculation of the potential drop of zero charge at the oxide interfaces. Based on the energy band diagram, this work provides an electronic description of a metallic nickel in contact with a p-type nickel oxide, which are immersed in a liquid phase containing a redox couple. The thermodynamic aspect is also taken into account. It describes the flux between the nickel oxide and the primary fluid, driven by the deviation from an equilibrium state, which is imposed by the reactor variation conditions (pH, purification of the fluid, and temperature).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lee CB (1990) Modeling of corrosion product transport in PWR primary coolant. Seoul National University Seoul Korea, B.S

    Google Scholar 

  2. Chen J (2000) On the interaction between fuel crud and water chemistry in nuclear power plants

  3. Song JS, Jo Cho H, Jung MY, Lee SH (2017) A study on the application of CRUDTRAN code in primary systems of domestic pressurized heavy-water reactors for prediction of radiation source term. Nucl Eng Technol 4(9):638–644

    Article  Google Scholar 

  4. International Atomic Energy Agency (2012) Modelling of transport of radioactive substances in the primary circuit of water cooled reactors. Tech. rep., IAEA

  5. Dacquait F, Francescatto J, Broutin F, Genin JB, Bénier G, Girard M, You D, Ranchoux G, Bonnefon J, Bachet M, G Riot (2012) Simulations of corrosion product transfer with the OSCAR v1.2 code. In: Nuclear Plant Chemistry Conference, no. P1-24 in 193, p 12

  6. Deshon J, Hussey D, Kendrick B, McGurk J, Secker J, Short M (2011) Pressurized water reactor fuel crud and corrosion modeling. JOM 63(8):64–72

    Article  CAS  Google Scholar 

  7. Pabst M (2014) Analytical solution of the Poisson-Nernst-Planck equations for an electrochemical system close to electroneutrality. J Chem Phys 140(224113):224113-1–224113-6

  8. Fromhold AT (1980) Fundamental theory of the growth of thick oxide films on metals. J Phys Soc Jpn 48(6):2022–2030

    Article  CAS  Google Scholar 

  9. Fromhold AT Jr (1976) Justification of the local space charge neutrality hypothesis in metal oxidation. Phys Lett 58A(2):118–120

    Article  CAS  Google Scholar 

  10. Chao CY, Lin LF, Macdonald DD (1981) A point defect model for anodic passive films - I. Film Growth Kinetics. J Electrochem Soc 128(6):1187–1194

    Article  CAS  Google Scholar 

  11. Macdonald DD (1992) The Point Defect Model for the Passive State. J Electrochem Soc 139(12):3434–3449

    Article  CAS  Google Scholar 

  12. Macdonald DD, Macdonald MU (1990) Theory of Steady-State Passive Films. J Electrochem Soc 137(8):2395–2402

    Article  CAS  Google Scholar 

  13. Zhang L, Macdonald DD, Sikora E, Sikorat J (1998) On the kinetics of growth of anodic oxide films. J Electrochem Soc 145(3):898–905

    Article  CAS  Google Scholar 

  14. Battaglia V, Newman J (1995) Modeling of a growing oxide film: The iron/iron oxide system. J Electrochem Soc 142(5):1423–1430

    Article  CAS  Google Scholar 

  15. Krishnamurthy B, White RE, Ploehn HJ (2001) Non-equilibrium point defect model for time-dependent passivation of metal surfaces. Electrochim Acta 46:3387–3396

    Article  CAS  Google Scholar 

  16. Vankeerberghen M (2006) 1D steady-state finite-element modellingof a bi-carrier one-layer oxide film. Corros Sci 48:3609–3628

    Article  CAS  Google Scholar 

  17. Bataillon C, Bouchon F, Chainais-Hillairet C, Desgranges C, Hoarau E, Martin F, Perrin S, Tupin M, Talandier J (2010) Corrosion modelling of iron based alloy in nuclear waste repository. Electrochim Acta 55:4451–4467

    Article  CAS  Google Scholar 

  18. Bataillon C, Bouchon F, Chainais-Hillairet C, Fuhrmann J, Hoarau E, Touzani R (2012) Numerical methods for the simulation of a corrosion model with moving oxide layer. J Computational Phys 213

  19. You D, Plancque G, Lovera P (2014) New Data for Thermodynamic and Kinetic Behaviour of Nickel Phases in PWR Physicochemical Conditions. In: Nuclear Plant Chemistry Conference, Atomic Energy Society of Japan, p 12

  20. Dacquait F, Francescatto J, Galassi G, Broutin F, Gherrab M, You D, Jobert T, Engler N (2018) The OSCAR V1.4 Code: A new dissolution-precipitation model to better simulate the corrosion product transfer in nuclear cooling systems. In: NPC

  21. Poulain R (2020) Electronic and electrocatalytic properties of nickel oxide thin films and interfacing on silicon for water splitting devices. PhD thesis, Technische Universität Darmstadt

  22. Seyeux A, Maurice V, Marcus P (2013) Oxide film growth kinetics on metals and alloys - I. Physical model. J Electrochem Soc 160(6):C189–C196

    Article  CAS  Google Scholar 

  23. Hunter RJ (2001) Foundations of colloid science. Oxford University Press, New York

    Google Scholar 

  24. Frumkin AN, Bagotskii VS et al (1952) Kinetics of electrode processes. Moscow University Press, USSR

    Google Scholar 

  25. Zhang L, Macdonald DD, Sikora E, Sikorat J (1998) On the kinetics of growth of anodic oxide films. J Electrochom Soc 145(3):898–905

    Article  CAS  Google Scholar 

  26. Han HJ, Kim BK, Park JH, Kim WK (2017) BG Park (2017) Study on a Modelling Method to Predict the Corrosion Product Behavior in PWR Primary System. Transactions of the Korean Nuclear Society Autumn Meeting Gyeongju, Korea

    Google Scholar 

  27. Liu Z, Dreybrodt W (1997) Dissolution kinetics of calcium carbonate minerals in H20-CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H20 + CO2 → H+ + HCO3-. Geochim Cosmochim Acta 61(14):2879–2889

    Article  CAS  Google Scholar 

  28. Lin CS, Moulton RW, Putnam GL (1953) Mass transfer between solid wall and fluid streams. Mechanism and eddy distribution. Relationships in turbulent flow. J Ind Eng Chem 45(3):636–640

    Article  CAS  Google Scholar 

  29. Dreybrodt W, Buhmann D (1991) A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chem Geol 90:107–122

    Article  CAS  Google Scholar 

  30. Stutzmann A, Leclercq S, Mansour C (2015) Chimie des milieux primaire et secondaire des centrales nucléaires rep françaises. Techniques de l’Ingénieur

  31. Koel GJ, Gellings PJ (1972) The contribution of different types of point defects to diffusion in coo and nio during oxidation of the metals oxidation of the metals. Oxid Met 5:185–203

    Article  CAS  Google Scholar 

  32. Spear WE (1973) Hole transport in pure nio crystals. Phys Rev B 7:831–833

    Article  CAS  Google Scholar 

  33. Mitoff SP (1961) Electrical conductivity and thermodynamic equilibrium in nickel oxide. J Chem Phys 35:882–889

    Article  CAS  Google Scholar 

  34. Rödl C, Fuchs F, Furthmüller J, Bechstedt F (2009) Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO. Phys Rev 79:235114-1–235114-8

    Article  Google Scholar 

  35. Wang G, Zheng J, Xu B, Zhang C, Zhu Y, Fang Z, Yang Z, Shang M, Yang W (2021) Tailored electronic band gap and valance band edge of nickel oxide via p-type incorporation. J Phys Chem C 125:7495–7501

    Article  CAS  Google Scholar 

  36. Li R-S et al (2018) A full potential all-electron calculation on electronic structure of NiO. Chin J Phys 56:2829–2836

    Article  CAS  Google Scholar 

  37. Li R-S et al (2019) Effect of correlation on electronic properties of NiO: A study from dynamical mean field theory. Chin J Phys 60:228–238

    Article  CAS  Google Scholar 

  38. Friedel J, Ziman JM (1969) The physics of metals. Cambridge University Press, London

  39. Parrott JE (1974) Reformulation of basic semiconductor transport equations-II. Solid-State Electron 17:10

    Article  Google Scholar 

  40. Peter L (2019) Photoelectrochemical kinetics: Hydrogen evolution on p-type semiconductors. J Electrochem Soc 166(5):H3125–H3132

    Article  CAS  Google Scholar 

  41. Park K, Ahn S, Kwon H (2011) Effects of solution temperature on the kinetic nature of passive film on Ni. Electrochim Acta 56:1662–1669

    Article  CAS  Google Scholar 

  42. Macdonald DD, Wbdley S (1990) An electrochemical impedance analysis of passive films on nickel(111) in phosphate buffer solutions. Electrochim Acta 35(11/12):1949–1956

    Article  CAS  Google Scholar 

  43. Sikora E, Macdonald DD (2002) Nature of the passive film on nickel. Electrochim Acta 48:69–77

    Article  CAS  Google Scholar 

  44. Ahn S, Kwon H, Macdonald DD (2005) Role of chloride ion in passivity breakdown on iron and nickel. J Electrochem Soc 152(11):B482–B490

    Article  Google Scholar 

  45. Sarrazin P, Galerie A, Fouletier J (2000) Les mécanismes de la corrosion sèche, une approche cinétique

  46. Kang J, Yang Y, Jiang X, Shao H (2008) Semiconducting properties of passive films formed on electroplated Ni and Ni-Co alloys. Corros Sci 50:3576–3580

    Article  CAS  Google Scholar 

  47. Liu K, Anderson MA (1996) Porous nickel oxide/nickel films for electrochemical capacitors. J Electrochem Soc 143:124–130

    Article  CAS  Google Scholar 

  48. Shatla AS, Landstorfer M, Baltruschat H (2021) On the differential capacitance and potential of zero charge of Au(111) in some aprotic solvents. Chem Electro Chem 8:1817–1835

    CAS  Google Scholar 

  49. Gileadi E, Argade SD, Gileadi E (1967) Adsorption in electrochemistry. Plenum Press, New York

    Book  Google Scholar 

  50. McCafferty E (2010) Relationship between the isoelectric point (pH pzc) and the potential of zero charge (E pzc) for passive metals. Electrochim Acta 55:1630–1637

    Article  CAS  Google Scholar 

  51. Gerischer H (1990) The impact of semiconductors on the concepts of electrochemistry. Electrochim Acta 35(11/12):1677–1699

    Article  CAS  Google Scholar 

  52. Gileadi E, Argade SD, Bockris J O’M (1965) The potential of zero charge of platinum and its pHdependence. J Phys Chem 70(6):2044–2046

  53. Natu G, Hasin P, Huang Z, Ji Z, He M, Wu Y (2012) Valence band-edge engineering of nickel oxide nanoparticles via cobalt doping for application in p-type dye sensitized solar cells. ACS Appl Mater Interfaces pp 5922–5929

  54. Sawatzky GA, Allen JW (1984) Magnitude and origin of the band gap in NiO. Phys Rev Lett 53(24):2339–2342

    Article  CAS  Google Scholar 

  55. Sato H, Minami T, Takata S, Yamada T (1993) Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236:27–31

    Article  CAS  Google Scholar 

  56. Zimmermann R et al (1999) Electronic structure of 3d-transition-metal oxides: On site Coulomb repulsion versus covalency. J Phys: Condens Matter 11:1657–1682

    CAS  Google Scholar 

  57. Bataillon C, Feron D, Marchetti L, Perrin S, You D, Bouineau V, Pecheur D, Corbel C, Godlewski J, Nguyen F, Tupin M (2010) La corrosion et l’altération des matériaux du nucléaire, le moniteur edn. Monographie DEN, Commissariat à l’Energie Atomique et aux Energies Alternatives CEA

  58. Viricel L, Andrieu C, Rocher A, Thomazet J, Dacquait F (ed) (2002) Primary water chemistry optimization for extended fuel cycle operation: results of the DUO experimentation after three cycles, no. 106 in CD-ROM, Proceedings of the International conference on water chemistry in nuclear reactors systems, Avignon

  59. Albu C, Deconinck D, Hotoiu L, Deconinck J, Topa V (2013) Steady-state analysis of the nickel oxide in neutral and weakly alkaline solutions. Electrochim Acta 89:114–121

    Article  CAS  Google Scholar 

  60. Sato N, Noda T (1977) Ion migration in anodic barrier oxide films on iron in acidic phosphate solutions. Electrochim Acta 22:839–843

    Article  CAS  Google Scholar 

  61. Macdonald DD (2011) The history of the Point Defect Model for the passive state: A brief review of film growth aspects. Electrochim Acta 56:1761–1772

    Article  CAS  Google Scholar 

  62. Werner Hoppe H, Henning Strehblow H (1990) XPS And UPS examinations of passive layers on NI And FE53NI alloys. Corros Sci 31:167–177

    Article  Google Scholar 

  63. Macdonald DD, Biaggio SR, Song H (1992) Interfacial Kinetic Effects and Diagnostic Criteria. J Electrochem Soc 139(1):170–177

    Article  CAS  Google Scholar 

  64. Grubač Z, Petrović Ž, Katić J, Metikoš-Huković M, Babić R (2010) The electrochemical behaviour of nanocrystalline nickel: A comparison with polycrystalline nickel under the same experimental condition. J Electroanal Chem 645:87–93

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Saidi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidi, T., You, D., Bataillon, C. et al. Electrostatic-thermodynamic-kinetic (ELTHEKI) modeling of the coupled \(\text {Ni}\)/\(\text {Ni}\text {O}\)/water system, under physico-chemical conditions of pressurized water reactors. J Solid State Electrochem 27, 1119–1141 (2023). https://doi.org/10.1007/s10008-023-05385-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05385-1

Keywords

Navigation