Skip to main content

Advertisement

Log in

Ni2+-doped ZnMn2O4 with enhanced electrochemical performance as cathode material for aqueous zinc-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Manganese-based materials are considered as potential cathode materials for aqueous zinc-ion batteries due to the advantages of high voltage platform, non-toxic, and environmental protection. However, the rapid decline capacity due to the dissolution of manganese and the low conductivity restrict its further development. In this paper, Ni2+-doped ZnMn2O4 nanoparticles were prepared and used as cathode materials for aqueous zinc-ion batteries. The Ni2+-doping effectively improves its electrochemical performance. The Ni2+-doped ZnMn2O4 cathode shows a discharge-specific capacity of 175 mAh g−1 after an activation process at current density of 100 mA g−1. At a high current density of 1A g−1, the cathode displays a specific capacity of 120 mAh g−1, and the Coulombic efficiency of above 97% can be maintained throughout the cycles except for the first cycle, indicating a high reversibility of charging/discharging. The Ni2+-doping increases the conductivity and zinc-ion diffusion coefficient of the material electrode through destroying the periodic potential field generated by the material. It shows that the synergistic effect of manganese and transition metal ions provides a possible direction for the future development of cathode materials for aqueous zinc-ion batteries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  CAS  PubMed  Google Scholar 

  2. Li Q, Liu Y, Guo SH, Zhou HS (2017) Solar energy storage in the rechargeable batteries. Nano Today 16:46–60

    Article  CAS  Google Scholar 

  3. Demirel EOS, Altin S, Bayri A, Altinb E, Avci S (2016) Enhancement of battery performance of LiMn2O4: correlations between electrochemical and magnetic properties. RSC Adv 6:43831

    Article  Google Scholar 

  4. Oz E, Demirel S, Altin S (2016) Fabrication and electrochemical properties of LiCo1-xRuxO2 cathode materials for Li-ion battery. J Alloy Compd 671:24–33

    Article  CAS  Google Scholar 

  5. Altin E, Altundag S, Altin S, Bayri A (2019) Fabrication of Cr doped Na0.67Fe0.5Mn0.5O2 compounds and investigation of their structural, electrical, magnetic and electrochemical properties. J Mater Sci: Mater Electron 30:17848–17855

    CAS  Google Scholar 

  6. Li B, Xue J, Han C, Liu N, Ma K, Zhang R, Wu X, Dai L, Wang L, He Z (2021) A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries. J Colloid Interface Sci 599:467–475

    Article  CAS  PubMed  Google Scholar 

  7. Ruan P, Liang S, Lu B, Fan HJ, Zhou J (2022) Design Strategies for High-Energy-Density Aqueous Zinc Batteries, Angew. Chem Int Ed Engl

  8. Zhao X, Liang X, Li Y, Chen Q, Chen M (2021) Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater 42:533–569

    Article  Google Scholar 

  9. Zeng Y, Wang Y, Jin Q, Pei Z, Luan D, Zhang X, Lou XW (2021) Rationally designed Mn2O3–ZnMn2O4 hollow heterostructures from metal–organic frameworks for stable Zn-ion storage, Angew. Chem Int Ed 25793–25798

  10. Yin C, Pan C, Liao X, Pan Y, Yuan L (2021) Coordinately unsaturated manganese-based metal-organic frameworks as a high-performance cathode for aqueous zinc-ion batteries. ACS Appl Mater Interfaces 13:35837–35847

    Article  CAS  PubMed  Google Scholar 

  11. Zhou S, Wu X, Xiang Y, Zhu L, Liu Z, Zhao C (2021) Manganese-based cathode materials for aqueous zinc ion batteries. Prog Chem 33:649–669

    CAS  Google Scholar 

  12. Tang F, Gao J, Ruan Q, Wu X, Wu X, Zhang T, Liu Z, Xiang Y, He Z, Wu X (2020) Graphene-wrapped MnO/C composites by MOFs-derived as cathode material for aqueous zinc ion batteries. Electrochim Acta 353:136570

    Article  CAS  Google Scholar 

  13. Alfaruqi MH, Mathew V, Gim J, Kim S, Song J, Baboo JP, Choi SH, Kim J (2015) Electrochemically induced structural transformation in a gamma-MnO2 cathode of a high capacity zinc-ion battery system. Chem Mater 27:3609–3620

    Article  CAS  Google Scholar 

  14. Housel LM, Wang L, Abraham A, Huang JP, Renderos GD, Quilty CD, Brady AB, Marschilok AC, Takeuchi KJ, Takeuchi ES (2018) Investigation of alpha-MnO2 tunneled structures as model cation hosts for energy storage. Acc Chem Res 51:575–582

    Article  CAS  PubMed  Google Scholar 

  15. Wei CG, Xu CJ, Li BH, Du HD, Kang FY (2012) Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. J Phys Chem Solids 73:1487–1491

    Article  CAS  Google Scholar 

  16. Zhang N, Zhang L, Cheng Z (2017) Neural information processing. 405–415

  17. Han M, Qin L, Liu Z, Zhang L, Li X, Lu B, Huang J, Liang S, Zhou J (2021) Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries. Mater Today Energy 20:100626

    Article  CAS  Google Scholar 

  18. Qin L, Zhu Q, Li L, Fang G, Li S, Cheng H, Guo W, Gao H (2021) Improved electrochemical performance of ZnMn2O4/CuO composite as cathode materials for aqueous zinc-ion batteries. Ionics 27:4783–4792

    Article  CAS  Google Scholar 

  19. Wang F, Dai H, Chen S, Li J, Wang Y (2020) Synthesis of peanut-shaped porous ZnMn(2)O(4)microparticles with enhanced lithium storage properties. J Mater Sci-Mater Electron 31:20632–20640

    Article  Google Scholar 

  20. Yan L, Zeng X, Li Z, Meng X, Wei D, Liu T, Ling M, Lin Z, Liang C (2019) An innovation: dendrite free quinone paired with ZnMn2O4 for zinc ion storage. Mater Today Energy 13:323–330

    Article  Google Scholar 

  21. Lee J-W, Seo S-D, Kim D-W (2019) Comparative study on ternary spinel cathode Zn–Mn–O microspheres for aqueous rechargeable zinc-ion batteries. J Alloy Compd 800:478–482

    Article  CAS  Google Scholar 

  22. Zhang N, Cheng F, Liu Y, Zhao Q, Lei K, Chen C, Liu X, Chen J (2016) Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 Electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc 138:12894–12901

    Article  CAS  PubMed  Google Scholar 

  23. Wu XW, Xiang YH, Peng QJ, Wu XS, Li YH, Tang F, Song RC, Liu ZX, He ZQ, Wu XM (2017) Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J Mater Chem A 5:17990–17997

    Article  CAS  Google Scholar 

  24. Mallick S, Choutipalli VSK, Bag S, Subramanian V, Raj CR (2022) Defect engineered ternary spinel: an efficient cathode for an aqueous rechargeable zinc-ion battery of long-term cyclability. ACS Appl Mater Interfaces 14:37577–37586

    Article  CAS  PubMed  Google Scholar 

  25. Zhang N, Cheng FY, Liu YC, Zhao Q, Lei KX, Chen CC, Liu XS, Chen J (2016) Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)(2) Electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc 138:12894–12901

    Article  CAS  PubMed  Google Scholar 

  26. Shi M, Wang B, Shen Y, Jiang J, Zhu W, Su Y, Narayanasamy M, Angaiah S, Yan C, Peng Q (2020) 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem Eng J 399:125627

    Article  CAS  Google Scholar 

  27. Zhang B, Chen J, Sun W, Shao Y, Zhang L, Zhao K (2022) Challenges and Perspectives for doping strategy for manganese-based zinc-ion battery cathode. Energies 15:4698

    Article  CAS  Google Scholar 

  28. Xiong T, Zhang YX, Lee WSV, Xue JM (2020) Defect engineering in manganese-based oxides for aqueous rechargeable zinc-ion batteries: a review. Adv Energ Mater 10

  29. Zhang D, Cao J, Zhang X, Insin N, Wang S, Han J, Zhao Y, Qin J, Huang Y (2021) Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni 2+ incorporation for high‐performance zinc ion battery. Adv Func Mater 2009412

  30. Yadav GG, Gallaway JW, Turney DE, Nyce M, Huang J, Wei X, Banerjee S (2017) Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat Commun 8

  31. Chen C, Shi M, Zhao Y, Yang C, Zhao L, Yan C (2021) Al-Intercalated MnO2 cathode with reversible phase transition for aqueous Zn-Ion batteries. Chem Eng J 422:130375

    Article  CAS  Google Scholar 

  32. Lian S, Sun C, Xu W, Huo W, Luo Y, Zhao K, Yao G, Xu W, Zhang Y, Li Z, Yu K, Zhao H, Cheng H, Zhang J, Mai L (2019) Built-in oriented electric field facilitating durable ZnMnO2 battery. Nano Energy 62:79–84

    Article  CAS  Google Scholar 

  33. Liu GX, Huang HW, Bi R, Xiao X, Ma TY, Zhang L (2019) K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries. J Mater Chem A 7:20806–20812

    Article  CAS  Google Scholar 

  34. Sun T, Nian Q, Zheng S, Shi J, Tao Z (2020) Layered Ca0.28MnO2·0.5H2O as a high performance cathode for aqueous zinc-ion battery. Small 16

  35. Li H, Huang Z, Chen B, Jiang Y, Li C, Xiao W, Yan X (2022) A high-performance MnO2 cathode doped with group VIII metal for aqueous Zn-ion batteries: in-situ X-Ray diffraction study on Zn2+ storage mechanism. J Power Source 527

  36. Ji J, Wan H, Zhang B, Wang C, Gan Y, Tan Q, Wang N, Yao J, Zheng Z, Liang P, Zhang J, Wang H, Tao L, Wang Y, Chao D, Wang H (2021) Co2+/3+/4+-regulated electron state of Mn-O for superb aqueous zinc-manganese oxide batteries. Adv Energy Mater 11:2003203

    Article  CAS  Google Scholar 

  37. Kataoka F, Ishida T, Nagita K, Kumbhar V, Yamabuki K, Nakayama M (2020) Cobalt-doped layered MnO 2 thin film electrochemically grown on nitrogen-doped carbon cloth for aqueous zinc-ion batteries. ACS Appl Energ Mater 3:4720–4726

    Article  CAS  Google Scholar 

  38. Shao T, Zhang Y, Cao T, Yang Y, Li Z, Liu H, Wang Y, YongyaoXia (2022) Structural regulation of ZnMn2O4 cathode material by K, Fe-double doping to improve its rate and cycling stabilityfor rechargeable aqueous zinc-based batteries. Chem Eng J 431:133735

    Article  CAS  Google Scholar 

  39. Tao Y, Li Z, Tang L, Pu X, Cao T, Cheng D, Xu Q, Liu H, Wang Y, Xia Y (2020) Nickel and cobalt Co-substituted spinel ZnMn2O4@N-rGO for increased capacity and stability as a cathode material for rechargeable aqueous zinc-ion battery. Electrochim Acta 331:135296

    Article  CAS  Google Scholar 

  40. Nwanebu E, Omanovic S, Hrapovic S, Gomez Vidales A, Tartakovsky B (2022) Carbon dioxide conversion to acetate and methane in a microbial electrosynthesis cell employing an electrically-conductive polymer cathode modified by nickel-based coatings. Int J Hydrogen Energy 47:203–215

    Article  CAS  Google Scholar 

  41. Gomez Vidales A, Sridhar D, Meunier J-L, Omanovic S (2020) Nickel oxide on directly grown carbon nanofibers for energy storage applications. J Appl Electrochem 50:1217–1229

    Article  CAS  Google Scholar 

  42. Banerjee HWND (1998) Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am Miner 83:305–315

    Article  Google Scholar 

  43. Polzonetti VDCG (1989) XPS study of MnO oxidation. J Electron Spectrosc Relat Phenom 48:117–123

    Article  Google Scholar 

  44. Fang Q, Chen C, Yang Z, Chen XA, Chen X, Liu T (2020) Synthetization and electrochemical performance of pomegranate-like ZnMn2O4 porous microspheres. J Alloys Comp 826

  45. Sun T, Nian Q, Zheng S, Shi J, Tao Z (2020) Layered Ca0.28 MnO2 .0.5H2 O as a high performance cathode for aqueous zinc-ion battery. Small 16:e2000597

  46. Sun T, Nian Q, Zheng S, Yuan X, Tao Z (2020) Water cointercalation for high-energy-density aqueous zinc-ion battery based potassium manganite cathode. J Power Source 478

  47. Zhao Q, Chen X, Wang Z, Yang L, Qin R, Yang J, Song Y, Ding S, Weng M, Huang W, Liu J, Zhao W, Qian G, Yang K, Cui Y, Chen H, Pan F (2019) Unravelling H(+) /Zn(2+) Synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small 15:e1904545

    Article  PubMed  Google Scholar 

  48. Alfaruqi MHG, Jihyeon; Kim, Sungjin; Song, Jinju; Jo, Jeonggeun; S.M. Kim, Vinod; Kim, Jaekook, (2015) Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J Power Sources 288:320–327

    Article  CAS  Google Scholar 

  49. Fang G, Zhou J, Pan A, Liang S (2018) Recent advances in aqueous zinc-ion batteries. ACS Energy Lett 3:2480–2501

    Article  CAS  Google Scholar 

  50. Zhao Q, Song A, Zhao W, Qin R, Ding S, Chen X, Song Y, Yang L, Lin H, Li S et al (2021) Boosting the energy density of aqueous batteries via facile grotthuss proton transport. Angew Chem Int Ed Engl 60:4169–4174

    Article  CAS  PubMed  Google Scholar 

  51. Zhao QH, Chen X, Wang ZQ, Yang LY, Qin RZ, Yang JL, Song YL, Ding SX, Weng MY, Huang WY, Liu JJ, Zhao WG, Qian GY, Yang K, Cui YH, Chen HB, Pan F (2019) Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small 15

  52. Zhao S, Han B, Zhang DT, Huang Q, Xiao L, Chen LB, Ivey DG, Deng YD, Wei WF (2018) Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. J Mater Chem A 6:5733–5739

    Article  CAS  Google Scholar 

  53. Huang Y, Mou J, Liu W, Wang X, Dong L, Kang F, Xu C (2019) Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+. Nano-Micro Lett 11

Download references

Funding

This work was supported by the Opening Project of State Key Laboratory of Powder Metallurgy, Central South University, and the Opening Project of Guangxi Key Laboratory of Green Processing of Sugar Resources (No.GXTZY202004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Qin or Lijun Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Zhu, Q., Li, L. et al. Ni2+-doped ZnMn2O4 with enhanced electrochemical performance as cathode material for aqueous zinc-ion batteries. J Solid State Electrochem 27, 773–784 (2023). https://doi.org/10.1007/s10008-022-05370-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05370-0

Keywords

Navigation