Skip to main content
Log in

Pyrochlore phase (Y,Dy,Ce,Nd,La)2Sn2O7 as a superb anode material for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

High-entropy pyrochlore oxide (Y,Dy,Ce,Nd,La)2Sn2O7 has been synthesized by the co-precipitation method. EDS and XPS analysis demonstrated the high-entropy structure in M2Sn2O7 (M = Y, Dy, Ce, Nd, La) ultrafine powders, which is developed as the active material in lithium anode. The effects of different binders on the cycling performance and rate capability were discussed. Benefiting from the synergistic effects of high-entropy system and the strong intermolecular force provided by the sodium carboxymethyl cellulose (CMC) system, the optimized M2Sn2O7/CMC (M = Y, Dy, Ce, Nd, La) delivers a high initial discharge capacity of about 766 mAh g−1 and exhibits excellent cycle stability. A reversible capacity of 396 mAh g−1 and superior delivering retention of ~ 100% can be obtained at 100 mA g−1 after 100 cycles. Meanwhile, the capacity retention rate of 54.5% can still be reached after the cycling at various current densities from 0.05 to 1 A g−1, demonstrating potential application prospect of the M2Sn2O7/CMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  CAS  PubMed  Google Scholar 

  2. Wang H, Wang H, Li Y, Wang Y, Si Z (2021) A bipolar metal phthalocyanine complex for sodium dual-ion battery. J Energy Chem 58:9–16

    Article  CAS  Google Scholar 

  3. Wang H, Wang Y, Wu Q, Zhu G (2022) Recent developments in electrode materials for dual-ion batteries: potential alternatives to conventional batteries. Mater Today 52:269–298

    Article  CAS  Google Scholar 

  4. Palomares V, Casas-Cabanas M, Castillo-Martínez E, Han MH, Rojo T (2013) Update on Na-based battery materials. A growing research path. Energ Environ Sci 6:2312–2337

    Article  CAS  Google Scholar 

  5. Yoon CS, Kim UH, Park GT, Kim SJ, Kim KH, Kim J, Sun YK (2018) Self-passivation of a LiNiO2 cathode for a lithium-ion battery through Zr doping. Acs Energy Lett 3:1634–1639

    Article  CAS  Google Scholar 

  6. Park KJ, Choi MJ, Maglia F, Kim SJ, Sun, YK (2018) High‐capacity concentration gradient Li[Ni0.865Co0.120Al0.015]O2 cathode for lithium‐ion batteries. Adv Energy Mater 8:1703612

  7. Ashuri M, He Q, Shaw LL (2016) Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8:74–103

    Article  CAS  PubMed  Google Scholar 

  8. Lu YC, Ma C, Alvarado J, Kidera T, Meng DN, YS, Okada S, (2015) Electrochemical properties of tin oxide anodes for sodium-ion batteries. J Power Sources 284:287–295

    Article  CAS  Google Scholar 

  9. Wu Q, Wang J, Wang H, Si Z, Li C, Bai J (2021) Doped graphene encapsulated SnP2O7 with enhanced conversion reactions from polyanions as a versatile anode material for sodium dual-ion battery. Electrochim Acta 369:137657

    Article  CAS  Google Scholar 

  10. Deng P, Yang J, Li S, Fan T, Wu H, Mou Y, Huang H, Zhang Q, Peng D, Qu B (2019) High initial reversible capacity and long life of ternary SnO2-Co-carbon nanocomposite anodes for lithium-ion batteries. Nano-Micro Lett 11:1–13

    Article  Google Scholar 

  11. Liu D, Huang X, Wei Z, Xia L, Pan H, Zhang T, Wang H, Duan X, Jia D, Zhou Y, Zhong B (2021) Orderly stacked graphene sheets supporting SnO2 nanoparticles as an anode material for lithium-ion batteries with incremental capacity. Appl Surf Sci 564:150265

    Article  CAS  Google Scholar 

  12. Xu J, Wang D, Kong S, Li R, Hong Z, Huang F (2020) Pyrochlore phase Ce2Sn2O7 via an atom-confining strategy for reversible lithium storage. J Mater Chem A 8:5744–5749

    Article  CAS  Google Scholar 

  13. Sharma N, Rao G, Chowdari B (2006) Anodic properties of tin oxides with pyrochlore structure for lithium ion batteries. J Power Sources 159:340–344

    Article  CAS  Google Scholar 

  14. Wu Q, Liu Y, Wang HG, Hou J, Li Y, Duan Q (2020) Graphene encapsulated metallic state Ce2Sn2O7 as a novel anode material for superior lithium-ion batteries and capacitors. J Mater Chem A 8:5517–5524

    Article  CAS  Google Scholar 

  15. Jayaraman V, Palanivel B, Ayappan C, Chellamuthu M, Mani A (2019) CdZnS solid solution supported Ce2Sn2O7 pyrochlore photocatalyst that proves to be an efficient candidate towards the removal of organic pollutants. Sep Purif Technol 224:405–420

    Article  CAS  Google Scholar 

  16. Anantharaman AP, Dasari HP (2021) Potential of pyrochlore structure materials in solid oxide fuel cell applications. Ceram Int 47:4367–4388

    Article  CAS  Google Scholar 

  17. Cioatera N, Voinea EA, Panaintescu E, Rolle A, Somacescu S, Spinu CI, Vannier RN (2016) Changes in structure and electrical conductivity of rare-earth titanate pyrochlores under highly reducing atmosphere. Ceram Int 42:1492–1500

    Article  CAS  Google Scholar 

  18. Qiu N, Chen H, Yang Z, Sun S, Wang Y, Cui Y (2018) A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J Alloy Compd 777:767–774

    Article  Google Scholar 

  19. Ye YF, Wang Q, Lu J, Liu CT, Yang Y (2016) High-entropy alloy: challenges and prospects. Mater Today 19:349–362

    Article  CAS  Google Scholar 

  20. Akrami S, Edalati P, Fuji M, Edalati K (2021) High-entropy ceramics: review of principles, production and applications. Mat Sci Eng R 146:100644

    Article  Google Scholar 

  21. Sarkar A, Breitung B, Hahn H (2020) High entropy oxides: the role of entropy, enthalpy and synergy. Scripta Mater 187:43–48

    Article  CAS  Google Scholar 

  22. Lokcu E, Toparli C, Anik M (2020) Electrochemical performance of (MgCoNiZn)1–x LixO high-entropy oxides in lithium-ion batteries. Acs Appl Mater Inter 12:23860–23866

    Article  CAS  Google Scholar 

  23. Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria J (2015) Entropy-stabilized oxides. Nat Commun 6:1–8

    Article  Google Scholar 

  24. Yan JH, Wang D, Zhang XY, Li JS, Du Q, Liu XY, Zhang JR, Qi XW (2020) A high-entropy perovskite titanate lithium-ion battery anode. J Mater Sci 55:6942–6951

    Article  CAS  Google Scholar 

  25. Teng Z, Tan YQ, Zeng SF, Meng Y, Chen C, Han XC, Zhang HB (2021) Preparation and phase evolution of high-entropy oxides A2B2O7 with multiple elements at A and B sites. J Eur Ceram Soc 41:3614–3620

    Article  CAS  Google Scholar 

  26. Subramanian MA, Aravamudan G, Rao GVS (1983) Oxide pyrochlores—a review. Prog Solid State Ch 15:55–143

    Article  CAS  Google Scholar 

  27. Goodwin AL, Kepert CJ (2005) Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials. Phys Rev B 71:140301

    Article  Google Scholar 

  28. Shan ZC, Wang YM, Ding HM (2009) Structure-dependent photocatalytic activities of MWO4 (M= Ca, Sr, Ba). J Mol Catal A-Chem 302:54–58

    Article  CAS  Google Scholar 

  29. Li C, Yin C, Gu L, Dinnebier RE, Maier J (2013) An FeF3·0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries. J Am Chem Soc 135:11425–11428

    Article  CAS  PubMed  Google Scholar 

  30. Kim J, Shih PC, Tsao KC, Pan YT, Yin X, Sun CJ, Yang H (2017) High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media. J Am Chem Soc 139:12076–12083

    Article  CAS  PubMed  Google Scholar 

  31. Sarkar A, Loho C, Velasco L, Thomas T, Bhattacharya SS, Hahn H, Djenadic R (2017) Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton T 46:12167–12176

    Article  CAS  Google Scholar 

  32. Vayer F, Decorse C, Bérardan D, Dragoe N (2021) New entropy-stabilized oxide with pyrochlore structure: Dy2(Ti0.2Zr0.2Hf0.2Ge0.2Sn0.2)2O7. J Alloy Compd 883:160773

    Article  CAS  Google Scholar 

  33. Hu QL, Yue B, Shao HY, Yang F, Wang JH, Wang Y, Liu JH (2021) Facile syntheses of perovskite type LaMO3 (M= Fe Co, Ni) nanofibers for high performance supercapacitor electrodes and lithium-ion battery anodes. J Alloy Compd 852:157002

    Article  CAS  Google Scholar 

  34. Wu F, Li Q, Chen L, Lu Y, Su YF, Bao LY, Chen RJ, Chen S (2019) Use of Ce to reinforce the interface of Ni-Rich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries under high operating voltage. Chemsuschem 12:935–943

    Article  CAS  PubMed  Google Scholar 

  35. Feng T, Shi J, Jiang D (2008) Preparation of transparent Ce: YSAG ceramic and its optical properties. J Eur Ceram Soc 28:2539–2543

    Article  CAS  Google Scholar 

  36. Li ZJ, Zhang WY, Yuan CS, Su YL (2017) Controlled synthesis of perovskite lanthanum ferrite nanotubes with excellent electrochemical properties. RSC Adv 7:12931–12937

    Article  CAS  Google Scholar 

  37. Ho KH, Wang J (2017) Hydrazine reduction of LaNiO3 for active materials in supercapacitors. J Am Ceram Soc 100:4629–4637

    Article  CAS  Google Scholar 

  38. Li LL, Peng SJ, Wang J, Cheah YL, The P, Ko Y, Wong C, Srinivasan M (2012) Facile approach to prepare porous CaSnO3 nanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries. Acs Appl Mater Inter 4:6005–6012

    Article  CAS  Google Scholar 

  39. Abu-Zied BM, Asiri AM (2014) Synthesis of Dy2O3 nanoparticles via hydroxide precipitation: effect of calcination temperature. J Rare Earth 32:259–264

    Article  CAS  Google Scholar 

  40. Ogunniran KO, Murugadoss G, Thangamuthu R, Periasamy P (2018) All inorganic based Nd0.9Mn0.1FeO3 perovskite for Li-ion battery application: synthesis, structural and morphological investigation. J Alloy Compd 766:1014–1023

    Article  CAS  Google Scholar 

  41. Maharajan S, Kwon NH, Brodard P, Fromm KM (2020) A nano-rattle SnO2@carbon composite anode material for high-energy li-ion batteries by melt diffusion impregnation. Nanomaterials-Basel 10:804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maiti S, Dhawa T, Mallik AK, Mahanty S (2017) CeO2@ C derived from benzene carboxylate bridged metal–organic frameworks: ligand induced morphology evolution and influence on the electrochemical properties as a lithium-ion battery anode. Sustain Energ Fuels 1:288–298

    Article  CAS  Google Scholar 

  43. Yuan CP, Wang HG, Liu JQ, Wu Q, Duan Q, Li YH (2017) Facile synthesis of Co3O4-CeO2 composite oxide nanotubes and their multifunctional applications for lithium ion batteries and CO oxidation. J Colloid Interf Sci 494:274–281

    Article  CAS  Google Scholar 

  44. Ding CX, Huang T, Tao YP, Tan DM, Zhang Y, Wang FX, Yu F, Xie QJ (2018) Identifying the origin and contribution of pseudocapacitive sodium ion storage in tungsten disulphide nanosheets for application in sodium-ion capacitors. J Mater Chem A 6:21010–21017

    Article  CAS  Google Scholar 

  45. Thu TV, Nguyen TV, Xuan LD, Son TL, Truong QD (2019) Graphene-MnFe2O4-polypyrrole ternary hybrids with synergistic effect for supercapacitor electrode. Electrochim Acta 314:151–160

    Article  CAS  Google Scholar 

  46. Nguyen HH, To NV, Tran TV, Nguyen KV, Luong ST, Nguyen NN, Hoang CV, Nguyen HS, Nguyen NV (2020) Mixing amorphous carbon enhanced electrochemical performances of NiCo2O4 nanoparticles as anode materials for sodium-ion batteries. Appl Phys A-Mater 126:1–9

    Article  Google Scholar 

  47. Yang SQ, Wang PB, Wei HX, Tang LB, Zhang XH, He ZJ, Li YJ, Tong H, Zheng JC (2019) Li4V2Mn (PO4)4-stablized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries. Nano Energy 63:103889

    Article  CAS  Google Scholar 

  48. Xiao B, Wu G, Wang TD, Wei ZG, Sui YW, Sheng BL, Qi JQ, Wei FX, Zheng JC (2022) High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries. Nano Energy 95:106962

    Article  CAS  Google Scholar 

  49. Markevich E, Salitra G, Aurbach D (2005) Influence of the PVdF binder on the stability of LiCoO2 electrodes. Electrochem Commun 7:1298–1304

    Article  CAS  Google Scholar 

  50. Jeong YK, Kwon TW, Lee I, Kim TS, Coskun A, Choi JW (2014) Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano let 14:864–870

    Article  CAS  Google Scholar 

  51. Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G, Yushin G (2010) Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. Acs Appl Mater Inter 2:3004–3010

    Article  CAS  Google Scholar 

  52. Song JX, Xu T, Gordin ML, Zhu PY, Lv DP, Jiang YB, Chen YS, Duan YH, Wang DH (2014) Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv Funct Mater 24:1243–1250

    Article  CAS  Google Scholar 

  53. Li J, Lewis RB, Dahn JR (2006) Sodium carboxymethyl cellulose: a potential binder for Si negative electrodes for Li-ion batteries. Electrochem Solid ST 10:A17–A20

    Article  Google Scholar 

  54. Li CC, Wang YW (2013) Importance of binder compositions to the dispersion and electrochemical properties of water-based LiCoO2 cathodes. J Power Sources 227:204–210

    Article  CAS  Google Scholar 

  55. Wang HJ, Jiang GW, Tan XJ, Liao JK, Yang X, Yuan R, Chai YQ (2018) Simple preparation of SnO2/C nanocomposites for lithium ion battery anode. Inorg Chem Commun 95:67–72

    Article  CAS  Google Scholar 

  56. Zuo S, Li D, Wu Z, Sun Y, Lu Q, Wang F, Zhuo R, Yan D, Wang J, Yan P (2018) SnO2/graphene oxide composite material with high rate performance applied in lithium storage capacity. Electrochim Acta 264:61–68

    Article  CAS  Google Scholar 

  57. Tian QH, Tian Y, Zhang ZX, Yang L, Hirano S (2015) Facile one-pot hydrothermal with subsequent carbonization preparation of hollow tin dioxide@carbon nanostructures as high-performance anode for lithium-ion batteries. J Power Sources 280:397–405

    Article  CAS  Google Scholar 

  58. Rong A, Gao XP, Li GR, Yan TY, Zhu HY, Qu JQ, Song DY (2006) Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. J Phys Chem B 110:14754–14760

    Article  CAS  PubMed  Google Scholar 

  59. Qi Y, Du N, Zhang H, Wu P, Yang D (2011) Synthesis of Co2SnO4@C core-shell nanostructures with reversible lithium storage. J Power Sources 196:10234–10239

    Article  CAS  Google Scholar 

  60. Chen L, Wu P, Wang H, Ye Y, Xu B, Cao G, Zhou YM, Lu TH, Yang YS (2014) Highly loaded SnO2/mesoporous carbon nanohybrid with well-improved lithium storage capability. J Power Sources 247:178–183

    Article  CAS  Google Scholar 

  61. Seok D, Shin WH, Kang SW, Sohn H (2021) Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility. J Alloy Compd 870:159267

    Article  CAS  Google Scholar 

  62. Guo XW, Fang XP, Sun Y, Shen LY, Wang ZX, Chen LQ (2013) Lithium storage in carbon-coated SnO2 by conversion reaction. J Power Sources 226:75–81

    Article  CAS  Google Scholar 

  63. Zhang L, Zhao K, Yu R, Yan M, Xu W, Dong Y, Ren W, Xu X, Tang C, Mai L (2017) Phosphorus enhanced intermolecular interactions of SnO2 and graphene as an ultrastable lithium battery anode. Small 13:1603973

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51702024).

Author information

Authors and Affiliations

Authors

Contributions

Tongzhou Jiang: Conceptualization, methodology, software, data curation, writing—original draft preparation. Fei Wu: Software. Yurong Ren: Writing—Reviewing. Jianhua Qiu: Writing—reviewing. Zhihui Chen: Writing—reviewing and editing.

Corresponding author

Correspondence to Zhihui Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Wu, F., Ren, Y. et al. Pyrochlore phase (Y,Dy,Ce,Nd,La)2Sn2O7 as a superb anode material for lithium-ion batteries. J Solid State Electrochem 27, 763–772 (2023). https://doi.org/10.1007/s10008-022-05369-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05369-7

Keywords

Navigation