Skip to main content
Log in

L-tyrosine-assisted synthesis of nanosilver/titanium nitride with hollow microsphere structure for electrochemical detection of hydrogen peroxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The nano-Ag–TiO2 hollow microsphere precursors were prepared by the one-pot solvothermal method using L-tyrosine as the template agent and reducing agent. Subsequently, the nano-Ag–TiN hollow microsphere composites were formed by reducing nitride in an ammonia-filled atmosphere. The esterification of ethanol solvent and L-tyrosine microdroplet template generates traces of water in situ for the hydrolysis of alkane titanium. As the L-tyrosine microdroplet templates are sacrificed and incorporated into the titanium dioxide matrix, a hybridized hollow structure is formed. With the help of L-tyrosine, the surface of Ag–TiO2 hollow microsphere precursors appeared folded rough surface, and the nanosilver was mostly distributed in the TiO2 spherical shell. The constructed Ag–TiO2 hollow microsphere demonstrated a good linear relationship between the current response value and the concentration in the range of 0.2–220 μM of H2O2, with the lowest detection limit of 0.04 μM. In the same concentration range, whereas the lowest detection limit of Ag–TiN hollow microsphere was 0.02 μM. The detection results of H2O2 revealed that the Ag–TiN/HMS electrode has outstanding interference resistance, stability, and repeatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Karimi A, Husain SW, Hosseini M, Aberoomand Azara P, Ganjali MR (2018) Rapid and sensitive detection of hydrogen peroxide in milk by enzyme-free electrochemiluminescence sensor based on a polypyrrole-cerium oxide nanocomposite. Sensors and Actuators 271:90–96. https://doi.org/10.1016/j.snb.2018.05.066

    Article  CAS  Google Scholar 

  2. Xing L, Zhang W, Fu L, Jose ML, Hao Y (2022) Fabrication and application of electrochemical sensor for analyzing hydrogen peroxide in food system and biological samples. Food Chem. https://doi.org/10.1016/j.foodchem.2022.132555

    Article  PubMed  Google Scholar 

  3. Muhammad A, Md MR, Isabella C, Canzonieri V, Flavio R, Salvatore D (2020) Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2020.112331

    Article  Google Scholar 

  4. Genevieve MK, Thuy P, Tina C, Susan T, Elaine C, Thomas G (2021) Efficacy of aerosolized hydrogen peroxide (Deprox) cleaning compared to physical cleaning in a Burns Unit. Infection, Disease & Health. https://doi.org/10.1016/j.idh.2021.01.003

    Article  Google Scholar 

  5. Tamiresdos SP, Oliveira GCM, Santos FA, Raymundo-Pereira PA, Oliveira ON Jr, Janegitz BC (2019) Use of zein microspheres to anchor carbon black and hemoglobin in electrochemical biosensors to detect hydrogen peroxide in cosmetic products. food and biological fluids. Talanta 194:737–744. https://doi.org/10.1016/j.talanta.2018.10.068

    Article  CAS  Google Scholar 

  6. Menendez ME, Moverman MA, Puzzitiello RN, Pagani NR, Namdari S (2020) A break-even analysis of benzoyl peroxide and hydrogen peroxide for infection prevention in shoulder arthroplasty. J Shoulder Elbow Surg 29(11):2185–2189. https://doi.org/10.1016/j.jse.2020.06.019

    Article  PubMed  Google Scholar 

  7. Mariano E, Michael A, Richard N, Nicholas R, Surena, MSc, A. Oona, E. Readin, J.K. Ferguson, S.J. Dancer, B.G. Mitchell. (2020) Measuring environmental contamination in critical care using dilute hydrogen peroxide (DHP) technology: an observational cross-over study. Infection, Disease & Health 25(2):107–112

    Article  Google Scholar 

  8. Tran HV, Huynha CD, Piro B (2018) Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite. Arab J Chem 11(4):453–459. https://doi.org/10.1016/j.arabjc.2016.08.007

    Article  CAS  Google Scholar 

  9. Atacan K, Ozacar M (2021) Construction of a non-enzymatic electrochemical sensor based on CuO/g-C3N4 composite for selective detection of hydrogen peroxide. Mater Chem Phys 266:124527. https://doi.org/10.1016/j.matchemphys.2021.124527

    Article  CAS  Google Scholar 

  10. Zhao FJ, Zhou S, Zhang YJ (2021) Ultrasensitive detection of hydrogen peroxide using Bi2Te3 electrochemical sensors. ACS Appl Mater Interfaces 13:4761–4767. https://doi.org/10.1021/acsami.0c19911

    Article  CAS  PubMed  Google Scholar 

  11. Balua S, Palanisamya S, Velusamyb V, Yanga TCK (2019) Sonochemical synthesis of gum guar biopolymer stabilized copper oxide on exfoliated graphite: application for enhanced electrochemical detection of H2O2 in milk and pharmaceutical samples. Ultrasonics-Sonochemistry 56:254–263. https://doi.org/10.1016/j.ultsonch.2019.04.023

    Article  CAS  Google Scholar 

  12. Ahmad K, Mobin SM (2021) Design and fabrication of cost-effective and sensitive non-enzymatic hydrogen peroxide sensor using Co-doped δ-MnO2 flowers. Anal Bioanal Chem 413:789–798. https://doi.org/10.1007/s00216-020-02861-9

    Article  CAS  PubMed  Google Scholar 

  13. Zenasni M, Quintero-Jaime A, Salinas-Torres D, Benyoucef A, Morallón E (2021) Electrochemical synthesis of composite materials based on titanium carbide and titanium dioxide with poly (N-phenyl-o-phenylenediamine) for selective detection of uric acid. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2021.115481

    Article  Google Scholar 

  14. Lin Y, Wu Y, Tan XC, Wu JW, Huang KJ, Mi Y, Ou PP, Wei FC (2022) Flower-like titanium dioxide as novel co-reaction accelerator for ultrasensitive “off–on” electrochemiluminescence aptasensor construction based on 2D g-C3N4 layer for thrombin detection. J Solid State Electrochem 26:959–971. https://doi.org/10.1007/s10008-022-05136-8

    Article  CAS  Google Scholar 

  15. Sun YX, Chen W, Li XQ, Yu QY, Zhu YX, Wang YT, Chen L, Li GJ, Niu YY (2021) Electrochemical performance and electrocatalytic behavior of myoglobin modified TiO2@3D graphene composite electrode. Int J Electrochem Sci. https://doi.org/10.20964/2021.10.11

  16. Jin GH, Ko E, Kim MK, Tran VK, Son SE, Geng YF, Hur W, Seong GH (2018) Graphene oxide-gold nanozyme for highly sensitive electrochemical detection of hydrogen peroxide. Sensors and Actuators B: Chemica 274:201–209. https://doi.org/10.1016/j.snb.2018.07.160

    Article  CAS  Google Scholar 

  17. Bard AJ, Faulkner LR (2001) Electrochemical Methods. Fundamentals and Applications, John Wiley & Sons, Inc, New York, The United States of America

  18. Megha R, Ali FA, Ravikiran YT, Ramana CHVV, KiranKumar ABV, Mishra DK, Vijayakumari SC, Kim D (2018) Conducting polymer nanocomposite based temperature sensors: a review. Inorg Chem Commun 98:11–28. https://doi.org/10.1016/j.inoche.2018.09.040

    Article  CAS  Google Scholar 

  19. Liu YJ, Wu W, Chen ZZ (2018) Structures of glycolate oxidase from Nicotiana benthamiana reveal a conserved pH sensor affecting the binding of FMN. Biochem Biophys Res Commun 503:3050–3056

    Article  CAS  PubMed  Google Scholar 

  20. Zhang HH, Cai X, Zhao HL, Sun WQ, Wang ZX, Lan M (2019) Enzyme-free electrochemical sensor based on ZIF-67 for the detection of superoxide anion radical released from SK-BR-3 cells. J Electroanal Chem 855:113653. https://doi.org/10.1016/j.jelechem.2019.113653

    Article  CAS  Google Scholar 

  21. Sun LG, Wu G, Wang Q, Lu J (2020) Nanostructural metallic materials: structures and mechanical properties. Mater Today 38:114–135. https://doi.org/10.1016/j.mattod.2020.04.005

    Article  CAS  Google Scholar 

  22. Chen DD, Zhuang XM, Zhai J (2018) Preparation of highly sensitive Pt nanoparticles-carbon quantum dots/ionic liquid functionalized graphene oxide nanocomposites and application for H2O2 detection. Sensors and Actuators 255:1500–1506. https://doi.org/10.1016/j.snb.2017.08.156

    Article  CAS  Google Scholar 

  23. Shoja Y, Isoaho N, Jokinen V, Franssila S (2022) Microfabrication atomic layer deposited PtNPs/TiN thin film on silicon as a nanostructure signal transducer: electrochemical characterization toward neurotransmitter sensing. Appl Surf Sci 573:151444. https://doi.org/10.1016/j.apsusc.2021.151444

    Article  CAS  Google Scholar 

  24. Wang QQ, Zhang XM, Chai XY, Wang TQ (2021) An electrochemical sensor for H2O2 based on Au nanoparticles embedded in UiO-66 metal-organic framework films. ACS Appl Nano Mater 4:6103–6110

    Article  CAS  Google Scholar 

  25. Arroquia A, Acosta I, Armada MPG (2020) Self-assembled gold decorated polydopamine nanospheres as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. Mater Sci Eng, C 109:110602. https://doi.org/10.1016/j.msec.2019.110602

    Article  Google Scholar 

  26. Crulhas BP, Ramos NP, Castro GR, Valber A (2016) Pedrosa detection of hydrogen peroxide releasing from prostate cancer cell using a biosensor. J Solid State Electrochem 20:2427–2433. https://doi.org/10.1007/s10008-016-3182-y

    Article  CAS  Google Scholar 

  27. Zhou T, Su Z, Wang XY, Luo M, Tu YF, Yan JL (2020) Fluorescence detections of hydrogen peroxide and glucose with polyetheleneimine-capped silver nanoclusters. Spectrochim Acta Part A Mol Biomol Spectrosc 244:118881. https://doi.org/10.1016/j.saa.2020.118881

    Article  CAS  Google Scholar 

  28. Guler M, Turkoglu V, Bulut A, Zahmakiran M (2018) Electrochemical sensing of hydrogen peroxide using Pd@Ag bimetallic nanoparticles decorated functionalized reduced graphene oxide. Electrochim Acta 263:118–126. https://doi.org/10.1016/j.electacta.2018.01.048

    Article  CAS  Google Scholar 

  29. Yang KX, Yan ZG, Ma L, Du YP, Peng B, Feng J (2019) A facile one-step synthesis of cuprous oxide/silver nanocomposites as efficient electrode-modifying materials for nonenzyme hydrogen peroxide sensor. Nanomaterials 9(4):523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li D, Meng LY, Dang SC, Jiang D, Shi WD (2017) Hydrogen peroxide sensing using Cu2O nanocubes decorated by Ag-Au alloy nanoparticles. J Alloy Compd 690:1–7. https://doi.org/10.1016/j.jallcom.2016.08.108

    Article  CAS  Google Scholar 

  31. Nycz M, Arkusz K, Pijanowska DG (2021) Electrodes based on a titanium dioxide nanotube-spherical silver nanoparticle composite for sensing of proteins. ACS Biomater Sci Eng 7:105–113. https://doi.org/10.1021/acsbiomaterials.0c0120

  32. Nycz M, Arkusz K, Pijanowska DG (2021) Fabrication of electrochemical biosensor based on titanium dioxide nanotubes and silver nanoparticles for heat shock protein 70 detection. Materials 14:3767. https://doi.org/10.3390/ma14133767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mehmandoust M, Çakar S, Özacar M, Erk N (2022) The determination of timolol maleate using silver/tannic acid/titanium oxide nanocomposite as an electrochemical sensor in real samples. Electroanalysis 34:1–14. https://doi.org/10.1002/elan.202100363

    Article  CAS  Google Scholar 

  34. Lim SP, Shahid MM, Rameshkumar P, Ming HN, Che L (2020) Amperometric detection of hydrogen peroxide and its density functional theory for adsorption on Ag/TiO2 nanohybrid. J Mater Sci: Mater Electron 31(8):6017–6026. https://doi.org/10.1007/s10854-020-03153-9

    Article  CAS  Google Scholar 

  35. Wu SS, Tan NY, Lan DH, Au CT, Yi B (2020) Hydrothermal fabricated Ag nanoparticles-decorated reduced graphene oxide composite for H2O2 electrochemical detection. Int J Electrochem Sci 15:6155–6164 https://doi.org/10.20964/2020.07.15

  36. Lu WB, Luo YL, Chang GH, Sun XP (2011) Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection. Biosens Bioelectron 26:4791–4797. https://doi.org/10.1016/j.bios.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  37. Baghayeri M, Veisi H, Farhadi S, Beitollahi H, Maleki B (2018) Ag nanoparticles decorated Fe3O4/chitosan nanocomposite: synthesis, characterization and application toward electrochemical sensing of hydrogen peroxide. J Iran Chem Soc 15:1015–1022. https://doi.org/10.1007/s13738-018-1298-y

    Article  CAS  Google Scholar 

  38. Chu YQ, Huang ZK, Wang XH, Zhou ML, Zhao FM (2020) Highly dispersed silver imbedded into TiN submicrospheres for electrochemical detecting of hydrogen peroxide. Scientifc Reports 22126

  39. Wu XZ, Ma P, Sun Y, Du FX, Song DQ, Xu GB (2021) Application of MXene in electrochemical sensors: a review. Electroanalysis 33:1827–1851. https://doi.org/10.1002/elan.202100192

    Article  CAS  Google Scholar 

  40. JiaCheng Gui Lu, Han WC (2021) Lamellar MXene: A novel 2D nanomaterial for electrochemical sensors. J Appl Electrochem 51:1509–1522. https://doi.org/10.1007/s10800-021-01593-7

    Article  CAS  Google Scholar 

  41. Ding SJ, Wang YM, Hong ZL, Xu JL, Wan DY, Huang FQ (2011) Biomolecule-assisted route to prepare titania mesoporous hollow structures. Chem Eur J 17:11535–11541. https://doi.org/10.1002/chem.201101314

    Article  CAS  PubMed  Google Scholar 

  42. Shankar S, Rhim JW (2015) Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohyd Polym 130:353–363. https://doi.org/10.1016/j.carbpol.2015.05.018

    Article  CAS  Google Scholar 

  43. Randjelović MS, Momčilović MZ, Enke D, Mirčeski V (2019) Electrochemistry of hydrogen peroxide reduction reaction on carbon paste electrodes modified by Ag- and Pt-supported carbon Microspheres. J Solid State Electrochem 23:1257–1267. https://doi.org/10.1007/s10008-019-04226-4

    Article  CAS  Google Scholar 

  44. Siao HW, Chen SM, Lin KC (2011) Electrochemical study of PEDOT-PSS-MDB-modified electrode and its electrocatalytic sensing of hydrogen Peroxide. J Solid State Electrochem 15:1121–1128. https://doi.org/10.1007/s10008-010-1174-x

    Article  CAS  Google Scholar 

  45. Manivel A, Anandan S (2011) Silver nanoparticles embedded phosphomolybdate–polyaniline hybrid electrode for electrocatalytic reduction of H2O2. J Solid State Electrochem 15:153–160. https://doi.org/10.1007/s10008-010-1080-2

    Article  CAS  Google Scholar 

  46. Liu X, Luo L, Ding Y (2011) Hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on γ-Al2O3 nanoparticles/chitosan film-modified electrode. J Solid State Electrochem 15:447–453. https://doi.org/10.1007/s10008-010-1120-y

    Article  CAS  Google Scholar 

  47. Li Y, Yang Y (2012) A new amperometric H2O2 biosensor based on nanocomposite films of chitosan–MWNTs, hemoglobin, and silver nanoparticles J Solid State Electrochem. 16:1133–1140. https://doi.org/10.1007/s10008-011-1503-8

  48. Afraz A, Rafati AA, Hajian A (2013) Analytical sensing of hydrogen peroxide on Ag nanoparticles–multiwalled carbon nanotube-modified glassy carbon electrode. J Solid State Electrochem 17:2017–2025. https://doi.org/10.1007/s10008-013-2057-8

    Article  CAS  Google Scholar 

  49. Wang L, Zhu H, Hou H, Zhang Z, Xiao X, Song Y (2012) A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on chitosan-graphene oxide/cysteamine-modified gold electrode. J Solid State Electrochem 16:1693–1700. https://doi.org/10.1007/s10008-011-1576-4

    Article  CAS  Google Scholar 

  50. Wang Y, Zhang H, Yao D, Pu J, Sun Y (2013) Direct electrochemistry of hemoglobin on graphene/Fe3O4 nanocomposite-modified glass carbon electrode and its sensitive detection for hydrogen peroxide. J Solid State Electrochem 17:881–887. https://doi.org/10.1007/s10008-012-1939-5

    Article  CAS  Google Scholar 

  51. Silva JV, Pimentel MD, Souto DEP, Luz RCS, Damos FS (2013) Application of horseradish peroxidase/polyaniline/bis (2-aminoethyl) polyethylene glycol-functionalized carbon nanotube composite as a platform for hydrogen peroxide detection with high sensitivity at low potential. J Solid State Electrochem 17:2795–2804. https://doi.org/10.1007/s10008-013-2182-4

    Article  CAS  Google Scholar 

  52. Nalini S, Nandini S, Suresh GS (2014) Amperometric hydrogen peroxide and cholesterol biosensors designed by using hierarchical curtailed silver flowers functionalized graphene and enzymes deposits. J Solid State Electrochem 18:685–701. https://doi.org/10.1007/s10008-013-2305-y

    Article  CAS  Google Scholar 

  53. Konstantin G, Nikolaev MV, Neumann E, Sergey S, Offenhäusser EA, Yulia G (2018) Mourzina Bimetallic nanowire sensors for extracellular electrochemical hydrogen peroxide detection in HL-1 cell culture. J Solid State Electrochem 22:1023–1035. https://doi.org/10.1007/s10008-017-3829-3

    Article  CAS  Google Scholar 

  54. Hao L, Li HX, Y C, (2014) Shen Nickel oxide hydroxide/platinum double layers modified n-silicon electrode for hydrogen peroxide determination. J Solid State Electrochem 18:1041–1047. https://doi.org/10.1007/s10008-013-2353-3

    Article  CAS  Google Scholar 

  55. Prabhu P, Babu RS, Narayanan SS (2014) Synergetic effect of Prussian blue film with gold nanoparticle graphite–wax composite electrode for the enzyme-free ultrasensitive hydrogen peroxide sensor. J Solid State Electrochem 18:883–891. https://doi.org/10.1007/s10008-013-2288-8

    Article  CAS  Google Scholar 

  56. Jaime-González J, Mazario E, Menendez N, Sanchez-Marcos J, Muñoz-Bonilla A, Herrasti P (2016) Comparison of ferrite nanoparticles obtained electrochemically for catalytical reduction of hydrogen peroxide. J Solid State Electrochem 20:1191–1198. https://doi.org/10.1007/s10008-015-2938-0

    Article  CAS  Google Scholar 

Download references

Funding

Authors thank the financial support by the National Key Research and Development Plan (Grant No. 2017YFB0307503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengming Zhao.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 319 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Y., Zhang, H., Zhou, H. et al. L-tyrosine-assisted synthesis of nanosilver/titanium nitride with hollow microsphere structure for electrochemical detection of hydrogen peroxide. J Solid State Electrochem 27, 753–761 (2023). https://doi.org/10.1007/s10008-022-05364-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05364-y

Keywords

Navigation