Skip to main content
Log in

Variable work function of semiconducting thin-film oxide electrodes: a case study of SnO2 and TiO2

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript


By atomic layer deposition, we prepared TiO2 thin films, which do not crack upon thermal treatment at 450–500 °C. The calcination changes the film’s work function by tens of meV, as evidenced by electrochemical impedance (Mott-Schottky) and Kelvin probe analyses. In contrast, the work function of ALD-SnO2 is enhanced by hundreds of meV after this heat treatment. The work function of calcined ALD-SnO2 films is by ca. 0.3–0.4 eV larger than that of the cassiterite single-crystal electrode. The as-prepared ALD-SnO2 film exhibits significant anodic photocurrent at potentials, when the calcined film is photoelectrochemically inactive. The ALD growth of SnO2 on the Au(111) substrate occurs preferentially at the Au grain boundaries. In spite of its non-conformal morphology, the Au-supported SnO2 film still blocks perfectly the anodic oxidation of ferrocyanide. Electrochemical doping of ALD-SnO2 by lithium causes a decrease of the work functions by 0.1–0.2 eV in a broad range of film thicknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Kavan L (2019) Conduction band engineering in semiconducting oxides (TiO2, SnO2): applications in perovskite photovoltaics and beyond. Catal Today 328:50–56

    Article  CAS  Google Scholar 

  2. Patel MY, Mortelliti MJ, Dempsey JL (2022) A compendium and meta-analysis of flatband potentials for TiO2, ZnO, and SnO2 semiconductors in aqueous media. Chem Phys Rev 3:011303

    Article  CAS  Google Scholar 

  3. Park SY, Zhu K (2022) Advances in SnO2 for efficient and stable n-i-p perovskite solar cells. Adv Mater 34:e2110438

    Article  PubMed  Google Scholar 

  4. Kim M, Jeong J, Lu H, Lee TK, Eickemeyer FT, Liu Y, Choi IW, Choi SJ, Jo Y, Kim HB, Mo SI, Kim YK, Lee H, An NG, Cho S, Tress WR, Zakeeruddin SM, Hagfeldt A, Kim JY, Grätzel M, Kim DS (2022) Conformal quantum dot- SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375:302–306

    Article  CAS  PubMed  Google Scholar 

  5. Ayguler MF, Hufnagel AG, Rieder P, Wussler M, Jaegermann W, Bein T, Dyakonov V, Petrus ML, Baumann A, Docampo P (2018) Influence of Fermi level alignment with tin oxide on the hysteresis of perovskite solar cells. ACS Appl Mat Interfaces 10:11414–11419

    Article  Google Scholar 

  6. Mansfeldova V, Zlamalova M, Tarabkova H, Janda P, Vorokhta M, Piliai L, Kavan L (2021) Work function of TiO2, (anatase, rutile, and brookite) single crystals: effects of the environment. J Phys Chem C 125:1902–1912

    Article  CAS  Google Scholar 

  7. Lichterman MF, Hu S, Richter MH, Crumlin EJ, Axnanda S, Favaro M, Drisdell W, Hussain Z, Mayer T, Brunschwig BS, Lewis NS, Liu Z, Lewerenz HJ (2015) Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ Sci 8:2409–2416

    Article  CAS  Google Scholar 

  8. Lee Y, Lee S, Seo G, Paek S, Cho KT, Huckaba AJ, Calizzi M, Choi DW, Park JS, Lee D, Lee HJ, Asiri AM, Nazeeruddin MK (2018) Efficient planar perovskite solar cells using passivated tin oxide as an electron transport layer. Adv Sci 5:1800130

    Article  Google Scholar 

  9. Jeong S, Seo S, Park H, Shin H (2019) Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%. Chem Commun 55:2433–2436

    Article  CAS  Google Scholar 

  10. Kodur M, Dorfman Z, Kerner RA, Skaggs JH, Kim T, Dunfield SP, Palmstrom A, Berry JJ, Fenning DP (2022) Electrochemical screening of contact layers for metal halide perovskites. ACS Energy Lett 7:683–689

    Article  CAS  Google Scholar 

  11. Moehl T, Suh J, Severy L, Wick-Joliat R, Tilley SD (2017) Investigation of (leaky) ALD TiO2, protection layers for water-splitting photoelectrodes. ACS Appl Mat Interfaces 9:43614–43622

    Article  CAS  Google Scholar 

  12. Kavan L, Tetreault N, Moehl T, Grätzel M (2014) Electrochemical characterization of TiO2, blocking layers for dye sensitized solar cells. J Phys Chem C 118:16408–16418

    Article  CAS  Google Scholar 

  13. Hoffeditz WL, Pellin MJ, Farha OK, Hupp JT (2017) Determining the conduction band-edge potential of solar-cell-relevant Nb2O5 fabricated by atomic layer deposition. Langmuir 33:9298–9306

    Article  CAS  PubMed  Google Scholar 

  14. Kavan L, Steier L, Grätzel M (2017) Ultrathin buffer layers of SnO2 by atomic layer deposition: perfect blocking function and thermal stability. J Phys Chem C 121:342–350

    Article  CAS  Google Scholar 

  15. Kavan L, Vlckova-Zivcova Z, Zlamalova M, Zakeeruddin SM, Grätzel M (2020) Electron-selective layers for dye-sensitized solar cells based on TiO2 and SnO2. J Phys Chem C 124:6512–6521

    Article  CAS  Google Scholar 

  16. Martínez-Puente MA, Tirado J, Jaramillo F, Garza-Hernández R, Horley P, Silva Vidaurri LG, Aguirre-Tostado FS, Martínez-Guerra E (2021) Unintentional hydrogen incorporation into the SnO2 electron transport layer by ALD and its effect on the electronic band structure. ACS Appl Energy Mater 4:10896–10908

    Article  Google Scholar 

  17. Kuang Y, Zardetto V, van Gils R, Karwal S, Koushik D, Verheijen MA, Black LE, Weijtens C, Veenstra S, Andriessen R, Kessels WMM, Creatore M (2018) Low-temperature plasma-assisted atomic-layer-deposited SnO2 as an electron transport layer in planar perovskite solar cells. ACS Appl Mater Interfaces 10:30367–30378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi DW, Maeng WJ, Park JS (2014) The conducting tin oxide thin films deposited via atomic layer deposition using tetrakis-dimethylamino tin and peroxide for transparent flexible electronics. Appl Surf Sci 313:585–590

    Article  CAS  Google Scholar 

  19. Bisquert J, Cendula P, Bertoluzzi L, Gimenez S (2014) Energy diagram of semiconductor/electrolyte junctions. J Phys Chem Lett 5:205–207

    Article  CAS  PubMed  Google Scholar 

  20. Xia Z, Rozyyev V, Mane AU, Elam JW, Darling SB (2021) Surface zeta potential of ALD-grown metal-oxide films. Langmuir 37:11618–11624

    Article  CAS  PubMed  Google Scholar 

  21. Kavan L (2014) Lithium insertion into TiO2, (anatase): electrochemistry, Raman spectroscopy, and isotope labeling. J Solid State Electrochem 18:2297–2306

    Article  CAS  Google Scholar 

  22. Beerbom MM, Lägel B, Cascio AJ, Doran BV, Schlaf R (2006) Direct comparison of photoemission spectroscopy and in situ Kelvin probe work function measurements on indium tin oxide films. J Electron Spectr Rel Phen 152:12–17

    Article  CAS  Google Scholar 

  23. Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys 48:4729–4733

    Article  CAS  Google Scholar 

  24. Hsu CH, Mansfeld F (2001) Technical note: concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57:747–748

    Article  CAS  Google Scholar 

  25. Hengerer R, Kavan L, Krtil P, Grätzel M (2000) Orientation dependence of charge transfer processes on TiO2, (anatase) single crystal. J Electrochem Soc 147:1467–1472

    Article  CAS  Google Scholar 

  26. Bolts JM, Wrighton MS (1976) Correlation of photocurrent-voltage curves with flat-band potential. J Phys Chem 80:2641–2645

    Article  CAS  Google Scholar 

  27. King LA, Yang Q, Grossett ML, Galazka Z, Uecker R, Parkinson BA (2016) Photosensitization of natural and synthetic SnO2 single crystals with dyes and quantum dots. J Phys Chem C 120:15735–15742

    Article  CAS  Google Scholar 

  28. Baena JPC, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson TJ, Kandada ARS, Zakeeruddin SM, Petrozza A, Abate A, Nazeeruddin MK, Grätzel M, Hagfeldt A (2015) Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci 8:2928–2934

    Article  Google Scholar 

  29. Hu T, Becker T, Pourdavoud N, Zhao J, Brinkmann KO, Heiderhoff R, Gahlmann T, Huang Z, Olthof S, Meerholz K, Tobbens D, Cheng B, Chen Y, Riedl T (2017) Indium-free perovskite solar cells enabled by impermeable tin-oxide electron extraction layers. Adv Mater 29:1606656

    Article  Google Scholar 

  30. Erdenebileg E, Wang H, Li J, Singh N, Dewi HA, Tiwari N, Mathews N, Mhaisalkar S, Bruno A (2021) Low-temperature atomic layer deposited electron transport layers for co-evaporated perovskite solar cells. Solar RRL 6:2100842

    Article  Google Scholar 

Download references


This work was supported by the Grant Agency of the Czech Republic (contract No. 22-24138S).

Author information

Authors and Affiliations


Corresponding author

Correspondence to L. Kavan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1773 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zlamalova, M., Mansfeldova, V., Tarabkova, H. et al. Variable work function of semiconducting thin-film oxide electrodes: a case study of SnO2 and TiO2. J Solid State Electrochem 27, 1935–1943 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: