Skip to main content
Log in

Biosensor nanostructures based on dual-chamber microbial fuel cells for rapid determination of biochemical oxygen demand and microbial community analysis

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A low-cost dual-chamber microbial fuel cell (MFC) was constructed as a biosensor for the rapid determination of biochemical oxygen demand (BOD) in domestic sewage. The operating conditions were optimized during the operation of the MFCs. The changes in the microbial community structure in the anode compartment were analyzed by 16S rRNA gene sequencing technology. The results indicated that the MFCs-BOD biosensor reached a steady state (maximum voltage of around 550 mV) within 1 week. The optimal working conditions were K3[Fe(CN)6] of 50 mm, anolyte pH of 7, and external resistance of 1000 Ω. The maximum current density and highest power density can be as high as 221.88 mA/m2 and 78.77 mW/m2, respectively. Compared with other studies, the start-up period of this MFCs-BOD biosensor was shorter (96–192 h), the determination range was wider (50–500 mg/L), and the determination time was short (within 3 h). The MFCs-BOD biosensor can accurately determine the BOD content of sewage water samples. The results of 16S rRNA gene sequencing showed that the anodic microbial community after the domestication changed significantly compared with the original inoculated anaerobic activated sludge flora, and the dominant electrogenic bacteria with the highest relative abundance belonged to Proteobacteria and Enterobacteria. The device has reliability and applicability in the BOD determination in actual domestic sewage, and this study provides a solid foundation for the future application of MFCs-BOD biosensor in the rapid determination of BOD in sewage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boukhalfa N, Darder M, Boutahala M, Aranda P, Ruiz-Hitzky E (2021) Composite nanoarchitectonics: alginate beads encapsulating sepiolite/magnetite/prussian blue for removal of cesium ions from water. B Chem Soc Jpn 94:1. https://doi.org/10.1246/bcsj.20200247

    Article  CAS  Google Scholar 

  2. Yuan GQ, Li FL, Li KZ, Liu J, Li JY, Zhang SW, Jia QL, Zhang HJ (2021) Research progress on photocatalytic reduction of Cr(VI) in polluted water. B Chem Soc Jpn 94:4. https://doi.org/10.1246/bcsj.20200317

    Article  CAS  Google Scholar 

  3. Yu SJ, Tang H, Zhang D, Wang SQ, Qiu MQ, Song G, Fu D, Hu BW, Wang XK (2021) MXenes as emerging nanomaterials in water purification and environmental remediation. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.152280

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hojjati-Najafabadi A, Mansoorianfar M, Liang TX, Shahin K, Karimi-Maleh H (2022) A review on magnetic sensors for monitoring of hazardous pollutants in water resources. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.153844

    Article  PubMed  Google Scholar 

  5. Logrono W, Guambo A, Perez M, Kadier A, Recalde C (2016) A terrestrial single chamber microbial fuel cell-based biosensor for biochemical oxygen demand of synthetic rice washed wastewater. Sensors (Basel) 16:101. https://doi.org/10.3390/s16010101

    Article  CAS  PubMed  Google Scholar 

  6. Jiang Y, Yang X, Liang P, Liu P, Huang X (2018) Microbial fuel cell sensors for water quality early warning systems: fundamentals, signal resolution, optimization and future challenges. Renew Sustain Energy Rev 81:292–305. https://doi.org/10.1016/j.rser.2017.06.099

    Article  CAS  Google Scholar 

  7. Abrevaya XC, Sacco NJ, Bonetto MC, Hilding-Ohlsson A, Corton E (2015) Analytical applications of microbial fuel cells. Part I: biochemical oxygen demand. Biosens Bioelectron 63:580–590. https://doi.org/10.1016/j.bios.2014.04.034

    Article  CAS  PubMed  Google Scholar 

  8. Al-Homoud A, Hondzo M, LaPara T (2007) Fluid dynamics impact on bacterial physiology: biochemical oxygen demand. J Environ Eng 133:226–236. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:2(226)

    Article  CAS  Google Scholar 

  9. Chang IS, Moon H, Jang JK, Kim BH (2005) Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron 20:1856–1859. https://doi.org/10.1016/j.bios.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  10. Cheng S, Lin Z, Sun Y, Li H, Ren X (2022) Fast and simultaneous detection of dissolved BOD and nitrite in wastewater by using bioelectrode with bidirectional extracellular electron transport. Water Res 213:118186. https://doi.org/10.1016/j.watres.2022.118186

  11. Hsieh MC, Cheng CY, Liu MH, Chung YC (2015) Effects of operating parameters on measurements of biochemical oxygen demand using a mediatorless microbial fuel cell biosensor. Sensors (Basel) 16:35. https://doi.org/10.3390/s16010035

    Article  CAS  PubMed  Google Scholar 

  12. Do MH, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Varjani S, Kumar M (2020) Microbial fuel cell-based biosensor for online monitoring wastewater quality: a critical review. Sci Total Environ 712:135612. https://doi.org/10.1016/j.scitotenv.2019.135612

    Article  CAS  PubMed  Google Scholar 

  13. Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545. https://doi.org/10.1023/a:1022891231369

    Article  CAS  PubMed  Google Scholar 

  14. Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613. https://doi.org/10.1016/s0956-5663(03)00272-0

    Article  CAS  PubMed  Google Scholar 

  15. Moon H, Chang IS, Kang KH, Jang JK, Kim BH (2004) Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol Lett 26:1717–1721. https://doi.org/10.1007/s10529-004-3743-5

    Article  CAS  PubMed  Google Scholar 

  16. ElMekawy A, Hegab HM, Pant D, Saint CP (2018) Bio-analytical applications of microbial fuel cell-based biosensors for onsite water quality monitoring. J Appl Microbiol 124:302–313. https://doi.org/10.1111/jam.13631

    Article  CAS  PubMed  Google Scholar 

  17. Sonawane JM, Ezugwu CI, Ghosh PC (2020) Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater: state-of-the-art and practical applications. Acs Sensors 5:2297–2316. https://doi.org/10.1021/acssensors.0c01299

    Article  CAS  PubMed  Google Scholar 

  18. Xiao N, Wu R, Huang JJ, Selvaganapathy PR (2020) Development of a xurographically fabricated miniaturized low-cost, high-performance microbial fuel cell and its application for sensing biological oxygen demand. Sensors and Actuators B-Chemical 304:127432. https://doi.org/10.1016/j.snb.2019.127432

    Article  CAS  Google Scholar 

  19. Pasternak G, Greenman J, Ieropoulos I (2017) Self-powered, autonomous biological oxygen demand biosensor for online water quality monitoring. Sensors and Actuators B-Chemical 244:815–822. https://doi.org/10.1016/j.snb.2017.01.019

    Article  CAS  PubMed  Google Scholar 

  20. Prathiba S, Kumar PS, Vo DVN (2022) Recent advancements in microbial fuel cells: a review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere 286:131856. https://doi.org/10.1016/j.chemosphere.2021.131856

    Article  CAS  PubMed  Google Scholar 

  21. Qi X, Wang SY, Li T, Wang X, Jiang Y, Zhou YX, Zhou XH, Huang X, Liang P (2021) An electroactive biofilm-based biosensor for water safety: pollutants detection and early-warning. Biosens Bioelectron 173:112822. https://doi.org/10.1016/j.bios.2020.112822

    Article  CAS  Google Scholar 

  22. Tardy GM, Lorant B, Gyalai-Korpos M, Bakos V, Simpson D, Goryanin I (2021) Microbial fuel cell biosensor for the determination of biochemical oxygen demand of wastewater samples containing readily and slowly biodegradable organics. Biotechnol Lett 43:445–454. https://doi.org/10.1007/s10529-020-03050-5

    Article  CAS  PubMed  Google Scholar 

  23. Xiao N, Wang B, Huang JJ (2021) Hydrodynamic optimization for design and operating parameters of an innovative continuous-flow miniaturized MFC biosensor. Chem Eng Sci 235:116505. https://doi.org/10.1016/j.ces.2021.116505

    Article  CAS  Google Scholar 

  24. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382. https://doi.org/10.1128/aem.70.9.5373-5382.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Do MH, Ngo HH, Guo WS, Chang SW, Nguyen DD, Deng LJ, Chen Z, Nguyen TV (2020) Performance of mediator-less double chamber microbial fuel cell-based biosensor for measuring biological chemical oxygen. J Environ Manage. https://doi.org/10.1016/j.jenvman.2020.111279

    Article  PubMed  Google Scholar 

  26. Guo F, Liu H (2020) Impact of heterotrophic denitrification on BOD detection of the nitrate - containing wastewater using microbial fuel cell -based biosensors. Chem Eng J 394:125042. https://doi.org/10.1016/j.cej.2020.125042

    Article  CAS  Google Scholar 

  27. Tian S, Zhang P, Liang Y, Zhang D, Wang B (2014) Performances of double-chamber microbial fuel cell-based BOD sensor. Chin J Environ Eng 8:2626–2632

    CAS  Google Scholar 

  28. Jatoi AS, Akhter F, Mazari SA, Sabzoi N, Aziz S, Soomro SA, Mubarak NM, Baloch H, Memon AQ, Ahmed S (2021) Advanced microbial fuel cell for waste water treatment-a review. Environ Sci Pollut Res Int 28:5005–5019. https://doi.org/10.1007/s11356-020-11691-2

    Article  CAS  PubMed  Google Scholar 

  29. Das S, Mangwani N (2010) Recent developments in microbial fuel cells: a review. J Sci Ind Res 69:727–731

    CAS  Google Scholar 

  30. Bakonyi P, Kook L, Rozsenberszki T, Toth G, Belafi-Bako K, Nemestothy N (2020) Development and application of supported ionic liquid membranes in microbial fuel cell technology: a concise overview. Membranes. https://doi.org/10.3390/membranes10010016

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hsieh MC, Chung YC (2014) Measurement of biochemical oxygen demand from different wastewater samples using a mediator-less microbial fuel cell biosensor. Environ Technol 35:2204–2211. https://doi.org/10.1080/09593330.2014.898700

    Article  CAS  PubMed  Google Scholar 

  32. Wang SQ, Tian S, Zhang PY, Ye JP, Tao X, Li F, Zhou ZY, Nabi M (2019) Enhancement of biological oxygen demand detection with a microbial fuel cell using potassium permanganate as cathodic electron acceptor. J Environ Manage. https://doi.org/10.1016/j.jenvman.2019.109682

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xiao N, Selvaganapathy PR, Wu R, Huang JJ (2020) Influence of wastewater microbial community on the performance of miniaturized microbial fuel cell biosensor. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.122777

    Article  PubMed  Google Scholar 

  34. Mathuriya AS, Yakhmi JV (2016) Microbial fuel cells - applications for generation of electrical power and beyond. Crit Rev Microbiol 42:127–143. https://doi.org/10.3109/1040841x.2014.905513

    Article  CAS  PubMed  Google Scholar 

  35. Gao YY, Yin FJ, Ma WQ, Wang S, Liu Y, Liu H (2020) Rapid detection of biodegradable organic matter in polluted water with microbial fuel cell sensor: method of partial coulombic yield. Bioelectrochemistry. https://doi.org/10.1016/j.bioelechem.2020.107488

    Article  PubMed  Google Scholar 

  36. Dai MX, Li YX, Li P, Guo W, Qi X, Zhang Y, Kong Q (2020) Constructed wetland-microbial fuel cells enhanced with zero-valent iron for wastewater treatment and power generation. Int Biodeterior Biodegrad 153:105048. https://doi.org/10.1016/j.ibiod.2020.105048

    Article  CAS  Google Scholar 

  37. Zhao H, Kong CH (2018) Elimination of pyraclostrobin by simultaneous microbial degradation coupled with the Fenton process in microbial fuel cells and the microbial community. Bioresour Technol 258:227–233. https://doi.org/10.1016/j.biortech.2018.03.012

    Article  CAS  PubMed  Google Scholar 

  38. Zhao NN, Jiang YN, Alvarado-Morales M, Treu L, Angelidaki I, Zhang YF (2018) Electricity generation and microbial communities in microbial fuel cell powered by macroalgal biomass. Bioelectrochemistry 123:145–149. https://doi.org/10.1016/j.bioelechem.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  39. Lee JY, Phung NT, Chang IS, Kim BH, Sung HC (2003) Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 223:185–191. https://doi.org/10.1016/s0378-1097(03)00356-2

    Article  CAS  PubMed  Google Scholar 

  40. Zhu KL, Wang SF, Liu H, Liu SJ, Zhang J, Yuan JX, Fu WC, Dang WH, Xu YH, Yang X, Wang ZW (2022) Heteroatom-doped porous carbon nanoparticle-decorated carbon cloth (HPCN/CC) as efficient anode electrode for microbial fuel cells (MFCs). J Clean Prod 336:10374. https://doi.org/10.1016/j.jclepro.2022.130374

    Article  CAS  Google Scholar 

  41. Hai BH, Zhang PY, Wang JY, Lv XX, Xu ZM (2016) Effect of acid treatment of anode graphite felt on the performance of microbial fuel cell-type BOD sensors. J Environ Eng 10(03):1075–1080

    CAS  Google Scholar 

  42. Li T, Song HL, Xu H, Yang XL, Chen QL (2021) Biological detoxification and decolorization enhancement of azo dye by introducing natural electron mediators in MFCs. J Hazard Mater 416:125864. https://doi.org/10.1016/j.jhazmat.2021.125864

    Article  CAS  PubMed  Google Scholar 

  43. Li T, Ma Y, Bo X, Wang XL, Wang JW, Zhong LP, Wang XB, Zhao Y (2015) Effect of concentration on the electrochemical performance of microbial fuel cells. New Chem Mater (Chinese) 43(10):166–168+172

  44. Raghavan SS, Chee S, Li JT, Poschmann J, Nagarajan N, Wei SJ, Verma CS, Ghadessy FJ (2019) Development and application of a transcriptional sensor for detection of heterologous acrylic acid production in E. coli. Microb Cell Fact 18. https://doi.org/10.1186/s12934-019-1185-y

  45. Morris K, Catterall K, Zhao H, Pasco N, John R (2001) Ferricyanide mediated biochemical oxygen demand - development of a rapid biochemical oxygen demand assay. Anal Chim Acta 442:129–139. https://doi.org/10.1016/s0003-2670(01)01133-3

    Article  CAS  Google Scholar 

  46. Catterall K, Zhao HJ, Pasco N, John R (2003) Development of a rapid ferricyanide-mediated assay for biochemical oxygen demand using a mixed microbial consortium. Anal Chem 75:2584–2590. https://doi.org/10.1021/ac0206420

    Article  CAS  PubMed  Google Scholar 

  47. Oh SE, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70:162–169. https://doi.org/10.1007/s00253-005-0066-y

    Article  CAS  PubMed  Google Scholar 

  48. Oota S, Hatae Y, Amada K, Koya H, Kawakami M (2010) Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater. Biosens Bioelectron 26:262–266. https://doi.org/10.1016/j.bios.2010.06.040

    Article  CAS  PubMed  Google Scholar 

  49. Sun JZ, Kingori GP, Si RW, Zhai DD, Liao ZH, Sun DZ, Zheng T, Yong YC (2015) Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol 71:801–809. https://doi.org/10.2166/wst.2015.035

    Article  CAS  PubMed  Google Scholar 

  50. Ma YM, Deng DD, Zhan Y, Cao LB, Liu Y (2022) A systematic study on self-powered microbial fuel cell based BOD biosensors running under different temperatures. Biochem Eng J 180:108372. https://doi.org/10.1016/j.bej.2022.108372

    Article  CAS  Google Scholar 

  51. Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL, Jia H, Zhang M, Lovley DR (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10:2505–2514. https://doi.org/10.1111/j.1462-2920.2008.01675.x

    Article  CAS  PubMed  Google Scholar 

  52. Bose D, Gopinath M, Vijay P, Sridharan S, Rawat R, Bahuguna R (2019) Bioelectricity generation and biofilm analysis from sewage sources using microbial fuel cell. Fuel. https://doi.org/10.1016/j.fuel.2019.115815

    Article  Google Scholar 

  53. Guo J, Cheng JP, Li BB, Wang JQ, Chu PP (2019) Performance and microbial community in the biocathode of microbial fuel cells under different dissolved oxygen concentrations. J Electroanal Chem 833:433–440. https://doi.org/10.1016/j.jelechem.2018.12.015

    Article  CAS  Google Scholar 

  54. Sugnaux M, Mermoud S, da Costa AF, Happe M, Fischer F (2013) Probing electron transfer with Escherichia coli: a method to examine exoelectronics in microbial fuel cell type systems. Bioresour Technol 148:567–573. https://doi.org/10.1016/j.biortech.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  55. Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743. https://doi.org/10.1038/416740a

    Article  CAS  PubMed  Google Scholar 

  56. Yu X, Zhu G, Gao Y, Wu Z, Zhang P, Zhang X, Qian C, Chen F, Zhang Y, Liu R, Rittmann BE (2022) Roles of Pseudomonas aeruginosa and Ensifer adhaerens in accelerating nitrobenzene biodegradation by removing an inhibitory intermediate. Int Biodeterior Biodegrad 171:105419. https://doi.org/10.1016/j.ibiod.2022.105419

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the financial support from the National Natural Science Foundation of China (nos. 21974097 and 22274117), the Education Department of Guangdong Province (nos. 2020KSYS004 and 2020ZDZX2015), the Science and Technology Bureau of Jiangmen (nos. 2019030102360012639 and 2020030102730008711), and the Undergraduate Training Programs (nos. 202111349019 and pdjh2022b0531).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolong Xu or Jianbo Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 792 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Lai, M., Liu, D. et al. Biosensor nanostructures based on dual-chamber microbial fuel cells for rapid determination of biochemical oxygen demand and microbial community analysis. J Solid State Electrochem 27, 585–595 (2023). https://doi.org/10.1007/s10008-022-05351-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05351-3

Keywords

Navigation