Skip to main content

Advertisement

Log in

Constructing the heterostructure of sulfide and layered double hydroxide as bifunctional electrocatalyst for overall water splitting

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The rational design of bifunctional electrocatalyst for water splitting that involves hydrogen and oxygen evolution reactions (HER and OER) is important but extremely challenging. In this work, we report a feasible method to fabricate the heterogeneous catalyst consisting of the sulfide and layered double hydroxide. The Co, Ni-based bimetallic sulfide with a unique cactus-like microstructure is in situ formed on Ni foam (NF) through the hydrothermal treatment; subsequently, Ni, Fe-layered double hydroxide (NiFe-LDH) nanosheets vertically grow on the underlying sulfide to form the quintessential core–shell heterostructure via the electrodeposition process. The achieved electrocatalyst that labeled as CNS/LDH/NF demonstrates an outstanding catalytic activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) as its delicate microstructure could provide abundant active sites and the tight coupling effect between the sulfide and hydroxide could facilitate the charge transfer process. The overpotentials for HER and OER at the current density of 100 mA cm−2 in an alkaline medium are 228 mV and 230 mV, respectively. When CNS/LDH/NF are used as both anode and cathode for overall water splitting, a cell voltage of 1.63 V is required to drive the current density of 10 mA cm−2. This work may shed some light on the reasonable construction of bifunctional electrocatalysts for water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang S, Lu A, Zhong CJ (2021) Hydrogen production from water electrolysis: role of catalysts. Nano Converg 8(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303

    Article  CAS  PubMed  Google Scholar 

  3. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29

    Article  CAS  PubMed  Google Scholar 

  4. Gong M, Wang D-Y, Chen C-C, Hwang B-J, Dai H (2015) A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res 9(1):28–46

    Article  CAS  Google Scholar 

  5. You B, Jiang N, Sheng M, Gul S, Yano J, Sun Y (2015) High-performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks. Chem Mater 27(22):7636–7642

    Article  CAS  Google Scholar 

  6. Gong Y, Xu Z, Pan H, Yu L, Zhi Y, Du QX (2018) Hierarchical Ni3S2 nanosheets coated on Co3O4 nanoneedles arrays on 3D nickel foam as efficient electrocatalyst for oxygen evolution reaction. J Mater Chem A 6(12):5098–5016

    Article  CAS  Google Scholar 

  7. Li R, Zang J, Li W, Li J, Zou Q, Zhou S, Su J, Wang Y (2020) Three-dimensional transition metal phosphide heteronanorods for efficient overall water splitting. Chemsuschem 13(14):3718–3725

    Article  CAS  PubMed  Google Scholar 

  8. Bahuguna G, Cohen A, Harpak N, Filanovsky B, Patolsky F (2022) Single-step solid-state scalable transformation of Ni-based substrates to high-oxidation state nickel sulfide nanoplate arrays as exceptional bifunctional electrocatalyst for overall water splitting. Small Methods 6(6):2200181

    Article  CAS  Google Scholar 

  9. Sheng W, Gasteiger HA, Shao-Horn Y (2010) Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc 157(11):B1529–B1536

    Article  CAS  Google Scholar 

  10. Suen NT, Hung S-F, Quan Q, Zhang N, Xu YJ, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365

    Article  CAS  PubMed  Google Scholar 

  11. Shilpa N, Pandikassala A, Krishnaraj P, Walko PS, Devi RN, Kurungot S (2022) Co-Ni layered double hydroxide for the electrocatalytic oxidation of organic molecules: an approach to lowering the overall cell voltage for the water splitting process. ACS Appl Mater Interfaces 14(14):16222–16232

    Article  CAS  PubMed  Google Scholar 

  12. Salmanion M, Najafpour MM (2021) Dendrimer-Ni-based material: toward an efficient Ni-Fe layered double hydroxide for oxygen-evolution reaction. Inorg Chem 60(8):6073–6085

    Article  CAS  PubMed  Google Scholar 

  13. Li M, Li H, Jiang X, Jiang M, Zhan X, Fu G, Lee J-M, Tang Y (2021) Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution. J Mater Chem A 9(5):2999–3006

    Article  CAS  Google Scholar 

  14. Huang G, Zhang C, Liu Z, Yuan S, Yang G, Li N (2021) Ultra-small NiFe-layered double hydroxide nanoparticles confined in ordered mesoporous carbon as efficient electrocatalyst for oxygen evolution reaction. Appl Surf Sci 565:150533

    Article  CAS  Google Scholar 

  15. Zhang T, Song F, Qian Y, Gao H, Shaw J, Rao Y (2021) Elemental engineering of high-charge-density boron in nickel as multifunctional electrocatalysts for hydrogen oxidation and Water Splitting. ACS Appl Energy Mater 4:5434–5442

    Article  CAS  Google Scholar 

  16. Tsai F-T, Chuang Y-Y, Hsieh H-H, Chen Y-H, Pao C-W, Chen J-L, Lu C-Y, Hao C-K, Liaw W-F (2022) Morphological and electronic optimization of nanostructured FeCoNi-based electrocatalysts by Al dopants for neutral/alkaline water splitting. ACS Appl Energy Mater 5(5):5886–5900

    Article  CAS  Google Scholar 

  17. Gatard V, Marin IM, De Masi D, Encinas T, Charlot F, Martin V, Aouine M, Geantet C, Faure S, Deseure J, Carrey J, Chaudret B, Chatenet M (2022) Durability of the FeNi3@Ni material designed for water electrolysis enhanced by high frequency alternating magnetic field. ACS Appl Energy Mater 5(6):7034–7048

    Article  CAS  Google Scholar 

  18. Han Z, Gsa B, Xla B, Bo N, Csa B, Lun P, Xza B, Zfha B, Jjza B (2021) Self-supporting NiFe-LDH-MoSx integrated electrode for highly efficient water splitting at the industrial electrolysis conditions. Chinese J Catal 42(10):1732–1741

    Article  Google Scholar 

  19. Wang M, Zhang L, Pan J, Huang M, Zhu H (2021) A highly efficient Fe-doped Ni3S2 electrocatalyst for overall water splitting. Nano Res 14(12):4740–4047

    Article  CAS  Google Scholar 

  20. Yu Y, Zhou J, Sun Z (2020) Novel 2D transition-metal carbides: ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction. Adv Funct Mater 30(47):2000570

    Article  CAS  Google Scholar 

  21. Cao L, Tao P, Li M, Lyu F, Wang Z, Wu S, Wang W, Huo Y, Huang L, Lu Z (2018) Synergistic effects of C/alpha-MoC and Ag for efficient oxygen reduction reaction. J Phys Chem Lett 9(4):779–784

    Article  CAS  PubMed  Google Scholar 

  22. Tang C, Cheng N, Pu Z, Xing W, Sun X (2015) NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting†. Angew Chem Int Ed 54(32):9351–9355

    Article  CAS  Google Scholar 

  23. Li K, Zhang J, Wu R, Yu Y, Zhang B (2016) Anchoring CoO domains on CoSe2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media. Adv Sci 3(6):1500426

    Article  Google Scholar 

  24. Zhang J, Shang X, Ren H, Chi J, Chai Y (2020) Modulation of inverse spinel Fe3O4 by phosphorus doping as an industrially promising electrocatalyst for hydrogen evolution. Adv Mater 32(52):1907792

    Article  CAS  Google Scholar 

  25. Liu X, Yunduo Y, Zhang H (2020) In situ-grown cobalt-iron phosphide-based integrated electrode for long-term water splitting under a large current density at the industrial electrolysis temperature. ACS Sustain Chem Eng 8(48):17828–17838

    Article  CAS  Google Scholar 

  26. Song S, Zang J, Zhou S, Gao H, Wang Y (2021) Self-supported amorphous nickel-iron phosphorusoxides hollow spheres on Ni-Fe foam for highly efficient overall water splitting. Electrochim Acta 392:138996

    Article  CAS  Google Scholar 

  27. Wu Y, Li F, Chen W, Xiang Q, Ma Y, Zhu H, Tao P, Song C, Shang W, Deng T, Wu J (2018) Coupling interface constructions of MoS2/Fe5Ni4S8 heterostructures for efficient electrochemical water splitting. Adv Mater 30(38):1803151

    Article  Google Scholar 

  28. Anantharaj S, Kundu S, Noda S (2020) Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction. J Mater Chem A 8(8):4174–4192

    Article  CAS  Google Scholar 

  29. Xfa B, Ys A, Js A, Lh A, Zh B (2021) Superhydrophilic 3D peony flower-like Mo-doped Ni2S3 @NiFe LDH heterostructure electrocatalyst for accelerating water splitting. Int J Hydrog Energy 46(7):5169–5180

    Article  Google Scholar 

  30. Gao R, Zhu J, Yan D (2021) Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: a mini review. Nanoscale 13(32):13593–13603

    Article  CAS  PubMed  Google Scholar 

  31. Park S, Khan Z, Shin TJ, Kim Y, Ko H (2019) Rechargeable Na/Ni batteries based on the Ni(OH)2/NiOOH redox couple with high energy density and good cycling performance. J Mater Chem A 7(4):1564–1573

    Article  CAS  Google Scholar 

  32. Liang X, Li Y, Fan H, Deng S, Xia X (2019) Bifunctional NiFe layered double hydroxide@Ni3S2 heterostructure as efficient electrocatalyst for overall water splitting. Nanotechnology 30(48):484001

    Article  CAS  PubMed  Google Scholar 

  33. Sun J, Xue H, Guo N, Song T, Hao YR, Sun J, Zhang J, Wang Q (2021) Synergetic metal defect and surface chemical reconstruction into NiCo2S4/ZnS heterojunction to achieve outstanding electrocatalysis performance. Angew Chem Int Ed 60(35):19435–19441

    Article  CAS  Google Scholar 

  34. Feng XJ, Shi YL, Shi JH, Hao LH, Hu ZG (2021) Superhydrophilic 3D peony flower-like Mo-doped Ni2S3@NiFe LDH heterostructure electrocatalyst for accelerating water splitting. Int J Hydrog Energy 46(7):5169–5180

    Article  CAS  Google Scholar 

  35. Zhao L, Ge H, Zhang G, Wang F, Li G (2021) Hierarchical Ni3S2-CoMoS on the nickel foam as an advanced electrocatalyst for overall water splitting. Electrochim Acta 387:138538

    Article  CAS  Google Scholar 

  36. Yang Y, Yao H, Yu Z, Islam SM, He H, Yuan M, Yue Y, Xu K, Hao W, Sun G (2019) Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J Am Chem Soc 141(26):10417–10430

    Article  CAS  PubMed  Google Scholar 

  37. Wang SP, Li X, Lu WX (2018) Synergistic effect: Hierarchical Ni3S2@Co(OH)2 heterostructure as efficient bifunctional electrocatalyst for overall water splitting. Appl Surf Sci 457:156–163

    Article  CAS  Google Scholar 

  38. Leng X, Chen S, Yang K, Chen M, Shaker M, Vdovin EE, Ge Q, Novoselov KS, Andreeva DV (2021) Introduction to two-dimensional materials. Surf Rev Lett 28(08):2140005

    Article  CAS  Google Scholar 

  39. Liu N, Peng Z, Tian Y, Liu H, Zhang Y, Deyneko DV, Mei L (2023) Cobalt pentlandite structured (Fe Co, Ni)9S8: fundamental insight and evaluation of hybrid supercapacitor. Appl Surf Sci 611:155568

    Article  CAS  Google Scholar 

  40. Xwa B, Yt A, Yan ZA, Dong WB, Sw C, Jza B (2020) Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chem Eng J 403:126297

    Google Scholar 

  41. Zhang Y, Sun C, Su H, Wei H, Dong X (2015) N-doped carbon coated hollow NixCo9xS8 urchins for a high performance supercapacitor. Nanoscale 7(7):3155–3163

    Article  CAS  PubMed  Google Scholar 

  42. Kang Z, Guo H, Wu J, Sun X, Zhang Y (2019) Engineering an earth-abundant element-based bifunctional electrocatalyst for highly efficient and durable overall water splitting. Adv Funct Mater 29(9):1807031

    Article  Google Scholar 

  43. Zhang W, Li D, Zhang L, She X, Yang D (2019) NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions. J Energy Chem 39(12):39–53

    Article  Google Scholar 

  44. Tan L, Yu J, Wang C, Wang H, Liu X, Gao H, Xin L, Liu D, Hou W, Zhan T (2022) Partial sulfidation strategy to NiFe-LDH@FeNi2S4 heterostructure enable high-performance water/seawater oxidation. Adv Funct Mater 40(29):2200951

    Article  Google Scholar 

  45. Yang Y, Xie Y, Yu Z, Guo S, Yuan M, Yao H, Liang Z, Lu YR, Chan TS, Li C (2021) Self-supported NiFe-LDH@CoSx nanosheet arrays grown on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. Chem Eng J 419:129512

    Article  CAS  Google Scholar 

  46. Liu F, Guo X, Hou Y, Wang F, Zou C, Yang H (2021) Hydrothermal combined with electrodeposition construction of a stable Co9S8/Ni3S2@NiFe-LDH heterostructure electrocatalyst for overall water splitting. Sustainable Energy Fuels 5:1429–1438

    Article  CAS  Google Scholar 

  47. Lra B, Chao WB, Wen LB, Rd B, Hs B, Ning LA, Bg B (2019) Heterostructural NiFe-LDH@Ni3S2 nanosheet arrays as an efficient electrocatalyst for overall water splitting. Electrochim Acta 318:42–50

    Article  Google Scholar 

  48. Feng X, Jiao Q, Dai Z, Dang Y, Li A (2021) Revealing effect of interfacial electron transfer in heterostructured Co9S8@NiFe-LDH for enhanced electrocatalytic oxygen evolution. J Mater Chem A 9(20):12244–12254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the Sichuan Science and Technology Program (2022YFG0297) and the Fundamental Research Funds for the Central Universities (2021SCU12056). We would like to thank Lingzhu Yu (National Engineering Research Center for Biomaterials, Sichuan University) for the help in characterizing SEM, the College of Chemistry and Analytical & Testing Center of Sichuan University, and the Ceshigo Research Service (www.ceshigo.com).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Zhang or Can Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 99561 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, S., Wang, Z. et al. Constructing the heterostructure of sulfide and layered double hydroxide as bifunctional electrocatalyst for overall water splitting. J Solid State Electrochem 27, 575–583 (2023). https://doi.org/10.1007/s10008-022-05350-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05350-4

Keywords

Navigation