Skip to main content

Advertisement

Log in

Heteroatom ternary-doped porous carbons derived from poly (cyclotriphosphazene-co-4,4-aminophenylether) microspheres as electrodes for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polyphosphazenes (PPNs) are considered an ideal class of inorganic–organic hybrid materials with structural stability inherited from inorganic backbone (-P = N-). PPNs are being employed as precursors for codoped porous carbon materials which are highly suitable for energy production and storage due to their intrinsically enriched heteroatoms like phosphorous, oxygen, and nitrogen. PPN-based codoped carbon materials owe micro- and meso-porous structures, outstanding pore volume, high surface area, exceptional ion transportation, good surface wettability, and high capacitive performance, which is pre-requisite for energy storage applications. With this inspiration, we prepared codoped porous constructed simply by adjusting the ramp conditions with better char yield, disordered structure, ultra-high surface area of 3407.8 m2/g, and ~ 10–13% heteroatom content. The codoped porous carbon microspheres (PZM-MS) were elucidated by XRD, Raman spectroscopy, XPS analysis, and Brunauer–Emmett–Teller (BET) method. The fabricated intrinsically doped N, P, and O carbon material provides a good capacitance output of 265.0 F/g at 0.5 A/g current density in a 6 M-KOH electrolyte in the symmetric-electric-double-layer capacitors (EDLCs). The PZM-MS delivers 75% columbic efficiency and 91% cycling stability after 10,000 GCD cycles with a 5.0 A/g current density. The codoped material delivers 6.5 W h/Kg energy density at a power density of 24.68 W/Kg at 0.1 A/g and surges down with an upsurge of power density.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25(4):1419–1445

    Article  CAS  Google Scholar 

  2. Wang S, Ren Z, Li J, Ren Y, Zhao L, Yu J (2014) Cotton-based hollow carbon fibers with high specific surface area prepared by ammonia etching for supercapacitor application. RSC Adv 4(59):31300–31307

    Article  CAS  Google Scholar 

  3. Yao Y, Ma C, Wang J, Qiao W, Ling L, Long D (2015) Rational design of high-surface-area carbon nanotube/microporous carbon core–shell nanocomposites for supercapacitor electrodes. ACS Appl Mater Interfaces 7(8):4817–4825

    Article  CAS  PubMed  Google Scholar 

  4. Yu S, Wang H, Hu C, Zhu Q, Qiao N, Xu B (2016) Facile synthesis of nitrogen-doped, hierarchical porous carbons with a high surface area: the activation effect of a nano-ZnO template. Journal of Materials Chemistry A 4(42):16341–16348

    Article  CAS  Google Scholar 

  5. Raza W, Ali F, Raza N, Luo Y, Kim K-H, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  6. Wang J, Wang C, Gong S, Chen Q (2019) Enhancing the capacitance of battery-type hybrid capacitors by encapsulating MgO nanoparticles in porous carbon as reservoirs for OH–ions from electrolytes. ACS Appl Mater Interfaces 11(24):21567–21577

    Article  CAS  PubMed  Google Scholar 

  7. Cheon JY, Kim JH, Kim JH, Goddeti KC, Park JY, Joo SH (2014) Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons. J Am Chem Soc 136(25):8875–8878

    Article  CAS  PubMed  Google Scholar 

  8. Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6(10):2839–2855

    Article  CAS  Google Scholar 

  9. Ren G, Li Y, Chen Q, Qian Y, Zheng J, Zhu Y, Teng C (2018) Sepia-derived N, P co-doped porous carbon spheres as oxygen reduction reaction electrocatalyst and supercapacitor. ACS Sustainable Chemistry & Engineering 6(12):16032–16038

    Article  CAS  Google Scholar 

  10. Wang Y, Li Y, Mao SS, Ye D, Liu W, Guo R, Feng Z, Kong J, Xie J (2019) N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries. Sustainable Energy Fuels 3(3):717–722

    Article  CAS  Google Scholar 

  11. Barzegar F, Bello A, Fashedemi OO, Dangbegnon JK, Momodu DY, Taghizadeh F, Manyala N (2015) Synthesis of 3D porous carbon based on cheap polymers and graphene foam for high-performance electrochemical capacitors. Electrochim Acta 180:442–450

    Article  CAS  Google Scholar 

  12. Liu C, Wang Y, Sun J.A (2020) Chen, A review on applications of layered phosphorus in energy storage, Transactions of Tianjin University 1–23

  13. Song Y, Yang J, Wang K, Haller S, Wang Y, Wang C, Xia Y (2016) In-situ synthesis of graphene/nitrogen-doped ordered mesoporous carbon nanosheet for supercapacitor application. Carbon 96:955–964

    Article  CAS  Google Scholar 

  14. Zhong C, Gong S, Jin LE, Li P, Cao Q (2015) Preparation of nitrogen-doped pitch-based carbon materials for supercapacitors, Materials Letters 156:1–6

  15. Zaman F, Akhtar N, Guan Y, Huang Y (2020) Thermal degradation kinetic analysis and conversion of Aesculus indica to porous carbon. Ind Crops Prod 153:112555

    Article  CAS  Google Scholar 

  16. Zou W, Zhang S, Abbas Y, Liu W, Zhang Y, Wu Z, Xu B (2020) Structurally designed heterochain polymer derived porous carbons with high surface area for high-performance supercapacitors. Appl Surf Sci 530:147296

    Article  CAS  Google Scholar 

  17. Gleria M, De Jaeger R (2001) Aspects of phosphazene research. J Inorg Organomet Polym 11(1):1–45

    Article  CAS  Google Scholar 

  18. Allcock HR (2016) The expanding field of polyphosphazene high polymers. Dalton Trans 45(5):1856–1862

    Article  CAS  PubMed  Google Scholar 

  19. Liu W, Zhang S, Dar SU, Zhao Y, Akram R, Zhang X, Jin S, Wu Z, Wu D (2018) Polyphosphazene-derived heteroatoms-doped carbon materials for supercapacitor electrodes. Carbon 129:420–427

    Article  CAS  Google Scholar 

  20. Zhang S, Ali S, Ma H, Zhang L, Wu Z, Wu D, Hu TS (2016) Preparation of poly (bis (phenoxy) phosphazene) and 31P NMR analysis of its structural defects under various synthesis conditions. J Phys Chem B 120(43):11307–11316

    Article  CAS  PubMed  Google Scholar 

  21. Abbas Y, Zuhra Z, Basharat M, Qiu M, Wu Z, Wu D, Ali S (2019) Morphology control of novel cross-linked ferrocenedimethanol derivative cyclophosphazenes: from microspheres to nanotubes and their enhanced physicochemical performances. J Phys Chem B 123(18):4148–4156

    Article  CAS  PubMed  Google Scholar 

  22. Abbas Y, Zuhra Z, Wu Z, Wu D, Ali S (2019) Poly (ferrocenedimethano) cyclotriphosphazene to homogenously Fe, N, P, O doped carbon nanotubes: an efficient and tremendous electrocatalyst for oxygen reduction reaction. J Electrochem Soc 166(8):H297

    Article  Google Scholar 

  23. Ozay H, Ozay O (2014) Synthesis and characterization of drug microspheres containing phosphazene for biomedical applications. Colloids Surf, A 450:99–105

    Article  CAS  Google Scholar 

  24. Qiu S, Xing W, Mu X, Feng X, Ma C, Yuen RK, Hu Y (2016) A 3D nanostructure based on transition-metal phosphide decorated heteroatom-doped mesoporous nanospheres interconnected with graphene: Synthesis and applications. ACS Appl Mater Interfaces 8(47):32528–32540

    Article  CAS  PubMed  Google Scholar 

  25. Dar SU, Ali S, Hameed MU, Zuhra Z, Wu Z (2016) A facile synthesis, structural morphology and fluorescent properties of cross-linked poly (cyclotriphosphazene-co-1, 3, 5-tri (4-hydroxyphenyl) benzene) hybrid copolymer microspheres. New J Chem 40(10):8418–8423

    Article  CAS  Google Scholar 

  26. Qiu M, Zhang S, Abbas Y, Zhang C, Liu W, Wu Z, Dai S, Zhang T (2020) Heteroatom-doped ultrahigh specific area carbons from hybrid polymers with promising capacitive performance. J Power Sources 478:228761

    Article  CAS  Google Scholar 

  27. Yang F, Zhang S, Yang Y, Liu W, Qiu M, Abbas Y, Wu Z, Wu D (2019) Heteroatoms doped carbons derived from crosslinked polyphosphazenes for supercapacitor electrodes. Electrochim Acta 328:135064

    Article  CAS  Google Scholar 

  28. Bae S-Y, Shim E-G, Kim D-W (2013) Effect of ionic liquid as a flame-retarding additive on the cycling performance and thermal stability of lithium-ion batteries. J Power Sources 244:266–271

    Article  CAS  Google Scholar 

  29. Dufek EJ, Stone ML, Jamison DK, Stewart FF, Gering KL, Petkovic LM, Wilson AD, Harrup MK, Rollins HW (2014) Hybrid phosphazene anodes for energy storage applications. J Power Sources 267:347–355

    Article  CAS  Google Scholar 

  30. Ellis WC, McDaniel ND, Bernhard S, Collins TJ (2010) Fast water oxidation using iron. J Am Chem Soc 132(32):10990–10991

    Article  CAS  PubMed  Google Scholar 

  31. Fu W, Xu R, Zhang X, Tian Z, Huang H, Xie J, Lei C (2019) Enhanced wettability and electrochemical performance of separators for lithium-ion batteries by coating core-shell structured silica-poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) particles. J Power Sources 436:226839

    Article  CAS  Google Scholar 

  32. Wycisk R, Pintauro PN (1996) Sulfonated polyphosphazene ion-exchange membranes. J Membr Sci 119(1):155–160

    Article  CAS  Google Scholar 

  33. Yagi M, Kaneko M (2001) Molecular catalysts for water oxidation. Chem Rev 101(1):21–36

    Article  CAS  PubMed  Google Scholar 

  34. Zhou Y, Huang Q, Low CTJ, Walton RI, McNally T, Wan C (2019) Heteroatom-doped core/shell carbonaceous framework materials: synthesis, characterization and electrochemical properties. New J Chem 43(14):5632–5641

    Article  CAS  Google Scholar 

  35. Allcock HR, Kugel R (1965) Synthesis of high polymeric alkoxy-and aryloxyphosphonitriles. J Am Chem Soc 87(18):4216–4217

    Article  CAS  Google Scholar 

  36. Zou W, Zhang S, Abbas Y, Liu W, Zhang Y, Wu Z, Xu B (2020) Structurally designed heterochain polymer derived porous carbons with high surface area for high-performance supercapacitors, Applied Surface Science 147296

  37. Zhang P, Huang X, Fu J, Huang Y, Zhu Y, Tang X (2009) A one-pot approach to novel cross-linked polyphosphazene microspheres with active amino groups. Macromol Chem Phys 210(9):792–798

    Article  CAS  Google Scholar 

  38. Li T, Li S, Ma T, Zhong Y, Zhang L, Xu H, Wang B, Feng X, Sui X, Chen Z (2019) Novel organic-inorganic hybrid polyphosphazene modified manganese hypophosphite shuttles towards the fire retardance and anti-dripping of PET. Eur Polymer J 120:109270

    Article  Google Scholar 

  39. Malkappa K, Ray SS (2019) Thermal stability, pyrolysis behavior, and fire-retardant performance of melamine cyanurate@ poly (cyclotriphosphazene-co-4, 4′-sulfonyl diphenol) hybrid nanosheet-containing polyamide 6 composites. ACS Omega 4(6):9615–9628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paulsdorf J, Wiemhöfer H-D, Orinák A, Zámostný P, Bělohlav Z, Baxter D (2007) Application of pyrolysis-capillary gas chromatography with NPD detection in thermal degradation of polyphosphazenes study. Cent Eur J Chem 5(1):271–290

    CAS  Google Scholar 

  41. Shi Y, Yu B, Zheng Y, Guo J, Chen B, Pan Z, Hu Y (2018) A combination of POSS and polyphosphazene for reducing fire hazards of epoxy resin. Polym Adv Technol 29(4):1242–1254

    Article  CAS  Google Scholar 

  42. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706

    Article  CAS  Google Scholar 

  43. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci, Part C: Polym Lett 4(5):323–328

    CAS  Google Scholar 

  44. Kim YS, Kim YS, Kim SH (2010) Investigation of thermodynamic parameters in the thermal decomposition of plastic waste−waste lube oil compounds. Environ Sci Technol 44(13):5313–5317

    Article  CAS  PubMed  Google Scholar 

  45. Wu K, Li X, Zhu Z, Ma G, Ding Y, Wang J, Ye Z, Peng X, Li D, Jin Z (2022) Brush-electroplated rGO@MnO2 composite supported on carbon cloth for flexible high-performance supercapacitor electrodes. J Mater Sci: Mater Electron 33(16):13326–13338

    CAS  Google Scholar 

  46. Zhu G, Ma L, Lin H, Zhao P, Wang L, Hu Y, Chen R, Chen T, Wang Y, Tie Z (2019) High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Res 12(7):1713–1719

    Article  CAS  Google Scholar 

  47. Käärik M, Arulepp M, Kozlova J, Aruväli J, Mäeorg U, Kikas A, Kisand V, Tamm A, Leis J (2022) Effect of partial oxidation and repolarization of TiC-derived nanoporous carbon electrodes on supercapacitor performance using a pH-neutral aqueous electrolyte. J Solid State Electrochem 26(11):2365–2378

    Article  Google Scholar 

  48. Kado Y, Soneda Y, Hatori H, Kodama M (2019) Advanced carbon electrode for electrochemical capacitors. J Solid State Electrochem 23(4):1061–1081

    Article  CAS  Google Scholar 

  49. Liang J, Zhu G, Lu Z, Zhao P, Wang C, Ma Y, Xu Z, Wang Y, Hu Y, Ma L (2018) Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. Journal of Materials Chemistry A 6(5):2047–2052

    Article  CAS  Google Scholar 

  50. Deng X, Li J, Shan Z, Sha J, Ma L, Zhao N (2020) AN, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. Journal of Materials Chemistry A 8(23):11617–11625

    Article  CAS  Google Scholar 

  51. Deng X, Li J, Zhu S, Ma L, Zhao N (2019) Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Storage Materials 23:491–498

    Article  Google Scholar 

  52. Jayaramulu K, Dubal DP, Nagar B, Ranc V, Tomanec O, Petr M, Datta KKR, Zboril R, Gómez-Romero P, Fischer RA (2018) Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv Mater 30(15):1705789

    Article  Google Scholar 

  53. Wang Q, Qin B, Zhang X, Xie X, Cao Q (2018) Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors. Journal of Materials Chemistry A 6(40):19653–19663

    Article  CAS  Google Scholar 

  54. Long C, Zhuang J, Xiao Y, Zheng M, Hu H, Dong H, Lei B, Zhang H, Liu Y (2016) Nitrogen-doped porous carbon with an ultrahigh specific surface area for superior performance supercapacitors. J Power Sources 310:145–153

    Article  CAS  Google Scholar 

  55. Ma C, Li Z, Li J, Fan Q, Wu L, Shi J, Song Y (2018) Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors. Appl Surf Sci 456:568–576

    Article  CAS  Google Scholar 

  56. Chen C, Li Z, Xu Y, Liao H, Wu L, Dou H, Zhang X, Deep eutectic solvent induced polyacrylonitrile‐derived hierarchical porous carbon for zinc‐ion hybrid supercapacitors, Batteries & Supercaps

  57. Lee KS, Seo YJ, Jeong HT Capacitive behavior of functionalized activated carbon-based all-solid-state supercapacitor. Carbon Letters 1–9

  58. Yu L, Tan S, Wu X, Song R (2021) Facile synthesis of nitrogen and oxygen co-doped hierarchical porous carbon materials for high performance super capacitors, Journal of Porous Materials 1–10

  59. Gao M, Fu J, Wang M, Wang K, Wang S, Wang Z, Chen Z, Xu Q (2018) A self-template and self-activation co-coupling green strategy to synthesize high surface area ternary-doped hollow carbon microspheres for high performance supercapacitors. J Colloid Interface Sci 524:165–176

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y, Yang B, Zhang D, Shi H, Lei M, Li H, Wang K (2020) Strong polar nonaqueous solvent-assisted microwave fabrication of N and P co-doped microporous carbon for high-performance supercapacitor. Appl Surf Sci 512:145711

    Article  CAS  Google Scholar 

  61. Zhang N, Liu F, Xu S-D, Wang F-Y, Yu Q, Liu L (2017) Nitrogen–phosphorus co-doped hollow carbon microspheres with hierarchical micro–meso–macroporous shells as efficient electrodes for supercapacitors. Journal of Materials Chemistry A 5(43):22631–22640

    Article  CAS  Google Scholar 

  62. Qiang Y, Jiang J, Xiong Y, Chen H, Chen J, Guan S, Chen J (2016) Facile synthesis of N/P co-doped carbons with tailored hierarchically porous structures for supercapacitor applications. RSC Adv 6(12):9772–9778

    Article  CAS  Google Scholar 

  63. Jiang J, Chen H, Wang Z, Bao L, Qiang Y, Guan S, Chen J (2015) Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors. J Colloid Interface Sci 452:54–61

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present investigation was completely supported by the National Science foundation (NSF) of China (grant number 51773010) and Post-Doctoral Science Foundation of China (CPDSF) grant number (2018M631310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanpeng Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z., Zaman, F., Basharat, M. et al. Heteroatom ternary-doped porous carbons derived from poly (cyclotriphosphazene-co-4,4-aminophenylether) microspheres as electrodes for supercapacitors. J Solid State Electrochem 27, 627–640 (2023). https://doi.org/10.1007/s10008-022-05349-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05349-x

Keywords

Navigation