Skip to main content

Advertisement

Log in

Synthesis of 1D β-MnO2 for high-performance supercapacitor application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical supercapacitors (ESs) still need to overcome development obstacles in order to realize their full potential while being acknowledged as a crucial part of all energy storage and conversion technologies. As developed, a fine one-dimensional nanomaterial in the form of MnO2 nanowires could be a key finding to extract the true potential of ES. The X-ray diffraction (XRD) and Raman analysis confirm the formation of the pure β-MnO2 phase. The sample possesses a nano rod-like structure with a diameter of about 45–65 nm, which provides a high specific surface area and a high surface-to-volume ratio. The MnO2 nanowires show a specific capacitance of 212.85 F g−1 at a current density of 0.2A g−1 with capacitance retention of > 97.5% and a coulombic efficiency of > 98% even after 5000 cycles. Also, the fabricated symmetric supercapacitor provides a high specific capacitance of 37.57 F g−1 at a current density of 0.2Ag−1. It shows high capacitance retention of about 101.1% with > 109% coulombic efficiency even after 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Purushothaman KK, Saravanakumar B, Babu IM, Sethuraman B, Muralidharan G (2014) Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Adv 4:23485–23491. https://doi.org/10.1039/C4RA02107J

    Article  CAS  Google Scholar 

  2. Zhang Y, Yuan X, Lu W, Yan Y, Zhu J, Chou TW (2019) MnO2 based sandwich structure electrode for supercapacitor with large voltage window and high mass loading. Chem Eng J 368:525–532. https://doi.org/10.1016/J.CEJ.2019.02.206

    Article  CAS  Google Scholar 

  3. Xiong S, Jiang S, Wang J, Lin H, Lin M, Weng S, Liu S, Jiao Y, Xu Y, Chen J (2020) A high-performance hybrid supercapacitor with NiO derived NiO@Ni-MOF composite electrodes. Electrochim Acta 340:135956. https://doi.org/10.1016/J.ELECTACTA.2020.135956

    Article  CAS  Google Scholar 

  4. Zhang K, Ye X, Shen Y, Cen Z, Xu K, Yang F (2020) Interface engineering of Co3O4 nanowire arrays with ultrafine NiO nanowires for high-performance rechargeable alkaline batteries. Dalt Trans 49:8582–8590. https://doi.org/10.1039/D0DT01556C

    Article  CAS  Google Scholar 

  5. Chen Y, Hu W, Gan H, Wang JW, Shi XC (2017) Enhancing high-rate capability of MnO2 film electrodeposited on carbon fibers via hydrothermal treatment. Electrochim Acta 246:890–896. https://doi.org/10.1016/J.ELECTACTA.2017.06.119

    Article  CAS  Google Scholar 

  6. Liu S, Li K, Zheng X (2019) Room-temperature facile synthesis of MnO2 on carbon film via UV-photolysis for supercapacitor. Prog Nat Sci Mater Int 29:16–19. https://doi.org/10.1016/J.PNSC.2019.03.016

    Article  CAS  Google Scholar 

  7. Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423. https://doi.org/10.1039/C5TA05523G

    Article  CAS  Google Scholar 

  8. Shen Y, Li Z, Cui Z, Zhang K, Zou R, Yang F, Xu K (2020) Boosting the interface reaction activity and kinetics of cobalt molybdate by phosphating treatment for aqueous zinc-ion batteries with high energy density and long cycle life. J Mater Chem A 8:21044–21052. https://doi.org/10.1039/D0TA07746A

    Article  CAS  Google Scholar 

  9. Lv Z, Luo Y, Tang Y, Wei J, Zhu Z, Zhou X, Li W, Zeng Y, Zhang W, Zhang Y, Qi D, Pan S, Jun Loh X, Chen X (2018) Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv Mater 30:1704531. https://doi.org/10.1002/ADMA.201704531

    Article  Google Scholar 

  10. Jain A, Ghosh M, Krajewski M, Kurungot S, Michalska M (2021) Biomass-derived activated carbon material from native European deciduous trees as an inexpensive and sustainable energy material for supercapacitor application. J Energy Storage. 34:102178. https://doi.org/10.1016/j.est.2020.102178

    Article  Google Scholar 

  11. Jain A, Michalska M, Zaszczyńska A, Denis P (2022) Surface modification of activated carbon with silver nanoparticles for electrochemical double layer capacitors. J Energy Storage 54:105367. https://doi.org/10.1016/j.est.2022.105367

    Article  Google Scholar 

  12. Krajewski M, Liao P-Y, Michalska M, Tokarczyk M, Lin J-Y (2019) Hybrid electrode composed of multiwall carbon nanotubes decorated with magnetite nanoparticles for aqueous supercapacitors. J Energy Storage 26:101020. https://doi.org/10.1016/j.est.2019.101020

    Article  Google Scholar 

  13. Chen Y-Y, Dhaiveegan P, Michalska M, Lin J-Y (2018) Morphology-controlled synthesis of nanosphere-like NiCo2S4 as cathode materials for high-rate asymmetric supercapacitors. Electrochim Acta 274:208–216. https://doi.org/10.1016/j.electacta.2018.04.086

    Article  CAS  Google Scholar 

  14. Qu Q, Zhang P, Wang B, Chen Y, Tian S, Wu Y, Holze R (2009) Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J Phys Chem C 113:14020–14027. https://doi.org/10.1021/JP8113094/ASSET/IMAGES/MEDIUM/JP-2008-113094_0011.GIF

    Article  CAS  Google Scholar 

  15. Park S, Lee YH, Choi S, Seo H, Lee MY, Balamurugan M, Nam KT (2020) Manganese oxide-based heterogeneous electrocatalysts for water oxidation. Energy Environ Sci 13:2310–2340. https://doi.org/10.1039/D0EE00815J

    Article  CAS  Google Scholar 

  16. Hsu YK, Chen YC, Lin YG, Chen LC, Chen KH (2011) Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situRaman spectroscopy. Chem Commun 47:1252–1254. https://doi.org/10.1039/C0CC03902K

    Article  CAS  Google Scholar 

  17. Zhang X, Yu P, Zhang H, Zhang D, Sun X, Ma Y (2013) Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim Acta 89:523–529. https://doi.org/10.1016/J.ELECTACTA.2012.11.089

    Article  CAS  Google Scholar 

  18. Vargas OA, Caballero A, Hernán L, Morales J (2011) Improved capacitive properties of layered manganese dioxide grown as nanowires. J Power Sources 196:3350–3354. https://doi.org/10.1016/J.JPOWSOUR.2010.11.097

    Article  CAS  Google Scholar 

  19. Ranjusha R, Sreekumaran Nair A, Ramakrishna S, Anjali P, Sujith K, Subramanian KRV, Sivakumar N, Kim TN, Nair SV, Balakrishnan A (2012) Ultra fine MnO2 nanowire based high performance thin film rechargeable electrodes: effect of surface morphology, electrolytes and concentrations. J Mater Chem 22:20465–20471. https://doi.org/10.1039/C2JM35027K

    Article  Google Scholar 

  20. Simon P, Gogotsi Y (2009) Materials for electrochemical capacitors, Nanosci Technol Collect Rev Nat J 320–329. https://doi.org/10.1142/9789814287005_0033

  21. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721. https://doi.org/10.1039/c0cs00127a

    Article  CAS  Google Scholar 

  22. Song MS, Lee KM, Lee YR, Kim IY, Kim TW, Gunjakar JL, Hwang SJ (2010) Porously assembled 2D nanosheets of alkali metal manganese oxides with highly reversible pseudocapacitance behaviors. J Phys Chem C 114:22134–22140. https://doi.org/10.1021/JP108969S/SUPPL_FILE/JP108969S_SI_001.PDF

    Article  CAS  Google Scholar 

  23. Vinu A, Murugesan V, Böhlmann W, Hartmann M (2004) An optimized procedure for the synthesis of AlSBA-15 with large pore diameter and high aluminum content. J Phys Chem B 108:11496–11505. https://doi.org/10.1021/JP048411F/SUPPL_FILE/JP048411FSI20040519_013233.PDF

    Article  CAS  Google Scholar 

  24. Mastragostino M, Arbizzani C, Soavi F (2001) Polymer-based supercapacitors. J Power Sources 97–98:812–815. https://doi.org/10.1016/S0378-7753(01)00613-9

    Article  Google Scholar 

  25. Giri S, Ghosh D, Kharitonov AP, Das CK (2012) Study of copper ferrite nanowire formation in presence of carbon nanotubes and influence of fluorination on high performance supercapacitor energy storage application 5. https://doi.org/10.1142/S1793604712500464

  26. Su X, Yang X, Yu L, Cheng G, Zhang H, Lin T, Zhao FH (2015) A facile one-pot hydrothermal synthesis of branched α-MnO2 nanorods for supercapacitor application. CrystEngComm 17:5970–5977. https://doi.org/10.1039/C5CE00707K

    Article  CAS  Google Scholar 

  27. Song Z, Liu W, Zhao M, Zhang Y, Liu G, Yu C, Qiu J (2013) A facile template-free synthesis of α-MnO2 nanorods for supercapacitor. J Alloys Compd 560:151–155. https://doi.org/10.1016/J.JALLCOM.2013.01.117

    Article  CAS  Google Scholar 

  28. Kumar N, Rodriguez JR, Pol VG, Sen A (2019) Facile synthesis of 2D graphene oxide sheet enveloping ultrafine 1D LiMn2O4 as interconnected framework to enhance cathodic property for Li-ion battery. Appl Surf Sci 463:132–140. https://doi.org/10.1016/J.APSUSC.2018.08.210

    Article  CAS  Google Scholar 

  29. Kumar N, Guru Prasad K, Sen A, Maiyalagan T (2018) Enhanced pseudocapacitance from finely ordered pristine α-MnO2 nanorods at favourably high current density using redox additive. Appl Surf Sci 449:492–499. https://doi.org/10.1016/J.APSUSC.2018.01.025

    Article  CAS  Google Scholar 

  30. Kumar N, Guru Prasad K, Maiyalagan T, Sen A (2018) Precise control of morphology of ultrafine LiMn2O4 nanorods as a supercapacitor electrode via a two-step hydrothermal method. CrystEngComm 20:5707–5717. https://doi.org/10.1039/C8CE01029C

    Article  CAS  Google Scholar 

  31. Kumar N, Bhaumik S, Sen A, Shukla AP, Pathak SD (2017) One-pot synthesis and first-principles elasticity analysis of polymorphic MnO 2 nanorods for tribological assessment as friction modifiers. RSC Adv 7:34138–34148. https://doi.org/10.1039/C7RA04401A

    Article  CAS  Google Scholar 

  32. Kumar N, Sen A, Rajendran K, Rameshbabu R, Ragupathi J, Therese HA, Maiyalagan T (2017) Morphology and phase tuning of α- and β-MnO 2 nanocacti evolved at varying modes of acid count for their well-coordinated energy storage and visible-light-driven photocatalytic behaviour. RSC Adv 7:25041–25053. https://doi.org/10.1039/C7RA02013A

    Article  CAS  Google Scholar 

  33. Kumar N, Dineshkumar P, Rameshbabu R, Sen A (2016) Facile size-controllable synthesis of single crystalline β-MnO2 nanorods under varying acidic strengths. RSC Adv 6:7448–7454. https://doi.org/10.1039/C5RA20852A

    Article  CAS  Google Scholar 

  34. Kumar N, Dineshkumar P, Rameshbabu R, Sen A (2015) Morphological analysis of ultra fine α-MnO2 nanowires under different reaction conditions. Mater Lett 158:309–312. https://doi.org/10.1016/J.MATLET.2015.05.172

    Article  CAS  Google Scholar 

  35. Kumar N, Gajraj V, Rameshbabu R, Mangalaraja RV, Joshi NC, Priyadarshi N (2022) Redox additive electrolyte assisted promising pseudocapacitance from strictly 1D and 2D blended structures of MnO2/rGO. Mater Charact 189:111991. https://doi.org/10.1016/j.matchar.2022.111991

    Article  CAS  Google Scholar 

  36. Kumar N, Thakur VN, Karthikeyan M, Gajraj V, Sen A, Joshi NC, Priyadarshi N (2022) Morphological reduction of Fe3O4 by a single-step hydrothermal synthesis using 1D MnO2 as a template and its supercapacitive behaviour. CrystEngComm 24:4611–4621. https://doi.org/10.1039/D2CE00620K

    Article  CAS  Google Scholar 

  37. Kumar N, Rodriguez JR, Pol VG, Sen A (2019) Synergistically advancing Li storage property of hydrothermally grown 1D pristine MnO2 over a mesh-like interconnected framework of 2D graphene oxide. J Solid State Electrochem 23:1443–1454. https://doi.org/10.1007/s10008-019-04221-9

    Article  CAS  Google Scholar 

  38. Upadhyay S, Pandey OP (2022) Low-temperature synthesized Mo 2 C and novel Mo 2 C – MnO 2 heterostructure for highly efficient hydrogen evolution reaction and high-performance capacitors. J Power Sources 535:1–10. https://doi.org/10.1016/j.jpowsour.2022.231450

    Article  CAS  Google Scholar 

  39. Upadhyay S, Pandey OP (2020) Synthesis of layered 2H–MoSe2 nanosheets for the high-performance supercapacitor electrode material. J Alloys Compd 157522. https://doi.org/10.1016/j.jallcom.2020.157522

  40. Upadhyay S, Pandey OP (2021) Synthesis of layered 2H–MoSe2 nanosheets for the high-performance supercapacitor electrode material. J Alloys Compd 857:157522. https://doi.org/10.1016/j.jallcom.2020.157522

    Article  CAS  Google Scholar 

  41. Sannasi V, Subbian K (2020) Influence of Moringa oleifera gum on two polymorphs synthesis of MnO2 and evaluation of the pseudo-capacitance activity. J Mater Sci Mater Electron 31:17120–17132. https://doi.org/10.1007/s10854-020-04272-z

    Article  CAS  Google Scholar 

  42. Julien C, Massot M, Baddour-Hadjean R, Franger S, Bach S, Pereira-Ramos JP (2003) Raman spectra of birnessite manganese dioxides. Solid State Ionics 159:345–356. https://doi.org/10.1016/S0167-2738(03)00035-3

    Article  CAS  Google Scholar 

  43. Upadhyay S, Pandey OP (2020) One-pot synthesis of pure phase molybdenum carbide (Mo2C and MoC) nanoparticles for hydrogen evolution reaction. Int J Hydrogen Energy 45:27114–27128. https://doi.org/10.1016/j.ijhydene.2020.07.069

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Thapar Institute of Engineering and Technology, Patiala, for the XRD and Raman measurements. The authors are thankful to Uttaranchal University, Dehradun, for the SEM analysis. The authors offer special gratitude to SAIF Lab, PU, Chandigarh, for TEM measurements.

Funding

The authors offer special gratitude to the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) for the funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Upadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pundir, S., Upadhyay, S., Priya, R. et al. Synthesis of 1D β-MnO2 for high-performance supercapacitor application. J Solid State Electrochem 27, 531–538 (2023). https://doi.org/10.1007/s10008-022-05347-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05347-z

Keywords

Navigation