Skip to main content

Advertisement

Log in

Enhanced electrical properties of CuO:CoO decorated with Sm2O3 nanostructure for high-performance supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present investigation, we have synthesized samarium (Sm) nanoparticles (NPs) and anchored them onto the surface of CuO:CoO nanostructure (NS) by utilizing a simple chemical precipitation method. Nanostructures (NS) were characterized utilizing powdered X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron spectroscopy (SEM), transmission electron spectroscopy (TEM), UV–visible spectroscopy (UV–Vis), and Brunauer–Emmett–Teller (BET) studies. Resulting Smx CuO: CoO (x = 1%, 5%, 10%, and 12%) NS were investigated for their anomalous electrical and supercapacitive behavior. NS energy storage performance was experimentally determined using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). Sm10%CuO:CoO exhibited better electrochemical response than other samples and showed a maximum specific capacitance of 283.6 F/g at 0.25 A/g in KOH electrolyte. However, contrary to our expectation, NS displayed rectifying nature in I-V, intercalative nature in C-V, and polaronic permittivity in all concentrations of Sm2O3 doping as compared with undoped CuO:CoO NS. The outstanding properties of Smx CuO:CoO NS are attributed to the synergy of high charge mobility of Sm NPs, leading to significant variation in dielectric permittivity, current–voltage (I-V) response, capacitance–voltage (C-V) behavior, with the formation of Sm3+ ionic cluster. The clusters lead to a change in dipole moment creating a strong local electric field. Additionally, a CR2032 type symmetric supercapacitor cell was fabricated using Sm10%CuO:CoO, which exhibited a maximum specific capacitance of 67.4 F/g at 0.1 A/g. The cell was also subjected to 5000 GCD cycles where it retained 96.3% Coulombic efficiency.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data that supports the findings of this study are available from the corresponding author by request email.

References

  1. Lee G, Cheng Y, Varanasi CV, Liu J (2014) Influence of the nickel oxide nanostructure morphology on the effectiveness of reduced graphene oxide coating in supercapacitor electrodes. J Phys Chem C 115:2281–2286

    Article  Google Scholar 

  2. Wu S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131

    Article  CAS  Google Scholar 

  3. Wang Y, Guo CX, Liu J, Chen T, Yang H, Li CM (2011) CeO2 nanoparticles/graphene nanocomposite based high performance supercapacitor. Dalton Trans 40:6388–6391

    Article  CAS  Google Scholar 

  4. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  5. Adachi N, Imanaka ZC, Kang Binary (2013) Rare earth oxides Springer Netherlands 2004

  6. Jhang JH, Schaefer A, Cartas W, Epuri S, Bäumer M, Weaver JF (2013) Growth and partial reduction of Sm2O3(111) thin films on Pt (111): evidence for the formation of SmO (100) J Phys. Chem C 117(41):21396–21406

    CAS  Google Scholar 

  7. Tsujimoto S, Masui T, Imanaka N (2015) Fundamental aspects of rare earth oxides affecting direct NO decomposition catalysis. E J Inorg Chem 9:1524–1528

    Article  Google Scholar 

  8. Antolini E, Perez J (2011) The use of rare earth-based materials in low-temperature fuel cells. Int J Hydrog Energy 36(24):15752–15765

    Article  CAS  Google Scholar 

  9. Johnson DA (1980) Principles of lanthanide chemistry. J Chem Educ 57(7):475

    Article  CAS  Google Scholar 

  10. Atwood DA (2012) The rare earth elements: fundamentals and applications John Wiley and Sons

  11. Rosynek MP (1977) Catalytic properties of rare earth oxides. Cat Rev 111–154

  12. Dezfuli AS, Ganjali MR, Norouzi P, Faridbod F (2015) Facile sonochemical synthesis and electrochemical investigation of ceria/graphene nanocomposites. J Mater Chem B 3(11):2362–2370

    Article  CAS  Google Scholar 

  13. Siddiqui H, Parra MR, Qureshi MS (2018) Studies of structural optical and electrical properties associated with defects in sodium-doped copper oxide (CuO/Na) nanostructures. J Mater Sci 53(12):8826–8843

    Article  CAS  Google Scholar 

  14. Mauro C, Stefano C, Mariangela L, Davide C, Marco S (2018) rare earth doped ceria: the complex connection between structure and properties. Front Chem 6:526

    Article  Google Scholar 

  15. Gouranga H, Debnath MP, Waldeck DH (2020) Optimizing the key variables to generate host sensitized lanthanide doped semiconductor nanoparticle luminophores. J Phys Chem C 124(49):26495–26517

    Article  Google Scholar 

  16. Peng F, Sun Y, Lu Y, Yu W, Ge M, Shi J, Cong R, Hao J, Dai N (2020) studies on sensing properties and mechanism of Cuo nanoparticles to H2S gas. Nanomater 10(4):774

    Article  CAS  Google Scholar 

  17. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  18. Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL (2021) Power of infrared and raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules. Chem Rev 121(3):1286–1424

    Article  CAS  Google Scholar 

  19. Xu R, Du L, Adekoya D, Zhang G, Zhang S, Sun S, Lei Y (2011) Well-defined nanostructures for electrochemical energy conversion and storage. Adv Energy Mater 11(15):2001537

    Article  Google Scholar 

  20. Eskandarloo H, Badiei A, Mohammad Behnajady A, Ziarani GM (2016) Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants. Ultrason Sonochem 28:169–177

    Article  CAS  Google Scholar 

  21. Shkir M, Ashraf IM, Khan A, Khan MT, El-Toni AM, AlFaify S (2020) A facile spray pyrolysis fabrication of Sm: CdS thin films for high-performance photo detector applications. Sens Actuators A Phys 306:111952

    Article  CAS  Google Scholar 

  22. Rodney JD, Deepapriya S, Vinosha PA, Krishnan S, Priscilla SJ, Daniel R, Das SJ (2018) Photo-Fenton degradation of nano-structured La doped CuO nanoparticles synthesized by combustion technique. Optik 161:204–216

    Article  CAS  Google Scholar 

  23. Eskandarloo H, Badiei A, Behnajady MA, Ziarani GM (2016) Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants. Ultrason Sonochem 28:169–177

    Article  CAS  Google Scholar 

  24. Lu AH, Li WC, Salabas EL, Spliethoff B, Schüth F (2006) Low temperature catalytic pyrolysis for the synthesis of high surface area nanostructured graphitic carbon. Chem Mater 18(8):2086–2094

    Article  CAS  Google Scholar 

  25. Khataee A, Saadi S, Vahid B, Joo SW, Min SBK (2016) Sonocatalytic degradation of Acid Blue 92 using sonochemically prepared samarium doped zinc oxide nanostructures. Ultrason Sonochem 29:27–38

    Article  CAS  Google Scholar 

  26. Raaen S (2021) Adsorption of carbon dioxide on mono-layer thick oxidized samarium films on ni (100). Nanomater 11(8):2064

    Article  CAS  Google Scholar 

  27. Gomez E, Valles E, Cojocaru P, Raygani A, Magagnin L (2012) Electrodeposition of SmCo nanostructures in deep eutectic solvent. ECS Trans 41(44):3

    Article  CAS  Google Scholar 

  28. Sachenko AV, Kostylyov VP, Litovchenko VG, Popov VG, Romanyuk BM, Chernenko VV, Naseka VM, Slusar TV, Kyrylova SI, Komarov FF (2018) Recombination characteristics of single-crystalline silicon wafers with a damaged near-surface layer. Ukr J Phys 58(2):142–142

    Article  Google Scholar 

  29. Zhao J, Shu X, Wang Y, Yu C, Zhang J, Cui J, Wu Y (2016) Construction of CuO/Cu2O@ CoO core shell nanowire arrays for high-performance super capacitors. Surf Coat Technol 299:15–21

    Article  CAS  Google Scholar 

  30. Tripathi A, Dixit T, Agrawal J, Singh V (2020) Band gap engineering in CuO nanostructures: dual-band broadband and UV-C photo detectors. Appl Phys Lett 116(11):111102

    Article  CAS  Google Scholar 

  31. Tung RT (1995) Electron transport at metal-semiconductor interfaces: General theory. Phys Rev 34(7):883–888

    Google Scholar 

  32. Mao Y, Xu P, Wu Q, Xiong J, Peng R, Huang W, Li WC (2021) Self-powered high-detectivity lateral mos2 schottky photo detectors for near-infrared operation. Adv Electron Mater 7(3):2001138

    Article  CAS  Google Scholar 

  33. Lv L, Yu J, Hu M, Yin S, Zhuge F, Ma Y, Zhai T (2021) Design and tailoring of two-dimensional Schottky PN and tunnelling junctions for electronics and optoelectronics. Nano scale 13(14):6713–6751

    CAS  Google Scholar 

  34. Schroder DK (2015) Semiconductor material and device characterization John Wiley & Sons ISBN-13: 978–0–471–73906–7

  35. Wang F, Swager TM (2011) Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes. J Am Chem Soc 133(29):11181–11193

    Article  CAS  Google Scholar 

  36. Shafarman WN, Castner TG, Brooks JS, Martin KP, Naughton MJ (1985) The low temperature magneto resistance of arsenic-doped silicon near the metal insulator transition. Solid-State Electron 28(1–2):93–99

    Article  CAS  Google Scholar 

  37. Sze SM, Ng KK (2006) LEDs and Lasers. Phys Semicondu Devices. https://doi.org/10.1002/0470068329

    Article  Google Scholar 

  38. Bodurtha K, Kakalios J (2015) Non-Arrhenius anomalous hopping electronic transport in hydrogenated amorphous silicon and composite amorphous/nano crystalline thin films. J Appl Phys 118(21):215103

    Article  Google Scholar 

  39. Hill RM, Dissado LA (1985) Debye and non-Debye relaxation J Phys C. Solid State Phys 18(19):3829

    Article  CAS  Google Scholar 

  40. Singh S, Kumar KS, Bitla Y, Kori B, Hiremath B, Rampur M, Joshi RS (2021) Large low-magnetic-field magneto capacitance effect and spin accumulation in graphene oxide. IEEE Trans Magn 58(2):1–5

    Article  Google Scholar 

  41. Wang Z, Wu H, Burr GW, Hwang CS, Wang KL, Xia Q, Yang JJ (2020) Resistive switching materials for information processing. Nat Rev Mater 5(3):173–195

    Article  CAS  Google Scholar 

  42. Downing R, Bossa GV, May S (2018) The role of ion–ion correlations for the differential capacitance of ionic liquids. J Phys Chem C 122(50):28537–28544

    Article  CAS  Google Scholar 

  43. Chen B, Wang Y, Li C, Fu L, Liu X, Zhu Y, Zhang L, Wu Y (2017) A Cr2O3/MWCNTs composite as a superior electrode material for supercapacitor. RSC Adv 7(40):25019–25024

    Article  CAS  Google Scholar 

  44. Adimule V, Bhat VS, Yallur BC, Gowda AH, Padova PD, Hegde G, Toghan A (2022) Facile synthesis of novel SrO0.5:MnO0.5 bimetallic oxide nanostructure as a high-performance electrode material for supercapacitors. Nanomater Nanotechnol 12:18479804211064028

  45. Bhat VS, Hegde G, Nasrollahzadeh M (2020) A sustainable technique to solve growing energy demand: porous carbon nanoparticles as electrode materials for high-performance supercapacitors. J Appl Electrochem 50(12):1243–1255

    Article  CAS  Google Scholar 

  46. Bhat VS, Kanagavalli P, Sriram G, John NS, Veerapandian M, Kurkuri M, Hegde G (2020) Low cost catalyst free high performance supercapacitors based on porous nano carbon derived from agriculture waste. J Energy Storage 32:101829

    Article  Google Scholar 

  47. Bhat VS, Jayeoye TJ, Rujiralai T, Sirimahachai U, Chong KF, Hegde G (2021) Acacia auriculiformis–derived bimodal porous nanocarbons via self-activation for high-performance supercapacitors. Front Energy Res 9:744133

    Article  Google Scholar 

  48. Bhat VS, Krishnan SG, Jayeoye TJ, Rujiralai T, Sirimahachai U, Viswanatha R, Khalid M, Hegde G (2021) Self-activated ‘green’ carbon nanoparticles for symmetric solid-state supercapacitors. J Mater Sci 56(23):13271–13290

    Article  CAS  Google Scholar 

  49. Anila RC, Vinay SB, Anitha V, Gurumurthy H (2021) Biomass or bio waste-derived carbon nanoparticles as promising materials for electrochemical sensing applications. J Electrochem Soc 53–86

  50. Kanagavalli P, Pandey GR, Bhat VS, Veerapandian M, Hegde G (2021) Nitrogenated-carbon nano electrocatalyst advertently processed from bio-waste of Allium sativum for oxygen reduction reaction. J Nano Chem 11(3):343–352

    Article  CAS  Google Scholar 

  51. Mazloum-Ardakani M, Sabaghian F, Naderi H, Ebadi A, Mohammadian-Sarcheshmeh H (2020) Electrochemical and theoretical study of novel functional porous graphene aerogel-supported Sm2O3 nanoparticles for supercapacitor applications. J Solid State Electrochem 24(3):571–582

    Article  CAS  Google Scholar 

  52. Shiri HM, Ehsani A, Khales MJ (2017) Electrochemical synthesis of Sm2O3 nanoparticles: application in conductive polymer composite films for supercapacitors. J Colloid Interface Sci 505:940–946

    Article  Google Scholar 

  53. Bhat VS, Jayeoye TJSS, Rujiralai T, Sirimahachai U, Chong KF, Hegde G (2020) Influence of surface properties on electro-chemical supercapacitors utilizing Callerya atropurpurea pod derived porous nanocarbons: structure property relationship between porous structures to energy storage devices. Nano Select 1(2):226–243

    Article  Google Scholar 

  54. Bhat VS, Toghan A, Hegde G, Varma RS (2022) Capacitive dominated charge storage in supermicropores of self-activated carbon electrodes for symmetric supercapacitors. J Energy Storage 52:104776

    Article  Google Scholar 

  55. Zhao J, Shu X, Wang Y, Yu C, Zhang J, Cui J, Qin Y, Zheng H, Liu J, Zhang Y, Wu Y (2016) Construction of CuO/Cu2O@ CoO core shell nanowire arrays for high-performance supercapacitors. Surf Coat Technol 299:15–21

    Article  CAS  Google Scholar 

  56. Abbasi L, Arvand M (2018) Engineering hierarchical ultrathin CuCo2O4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder-free supercapacitors. Appl Surf Sci 445:272–280

    Article  CAS  Google Scholar 

  57. Liu S, Hui KS, Hui KN, Yun JM, Kim KH (2016) J Mater Chem A 4:8061–8071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to Centre for advanced Research, MSRIT, Bangalore, Karnataka, India, for the characterization of the samples and the Central university of Karnataka for carrying out electrical and super capacitive property studies.

Author information

Authors and Affiliations

Authors

Contributions

Dr Vinayak Adimule wrote the paper and handled the revisions of the manuscript. Dr. Basappa C Yallur conceived the ideas, synthesis, and characterization of the nanostructures. Dr. Sheetal Batakurki conceived the ideas, synthesis, and purification of the nanostructures. Mr. Vinay S Bhat was involved in the electrochemical analysis supercapacitor cell fabrication and analysis and prepared part of the manuscript. Dr. Rajeev Joshi carried out electrical and energy storage properties of the nanostructure and wrote the paper. Dr. Gurumurthy Hegde was involved in revising the paper and conceived the ideas.

Corresponding authors

Correspondence to Vinayak Adimule or Sheetal Batakurki.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adimule, V., Bhat, V.S., Joshi, R. et al. Enhanced electrical properties of CuO:CoO decorated with Sm2O3 nanostructure for high-performance supercapacitor. J Solid State Electrochem 27, 511–529 (2023). https://doi.org/10.1007/s10008-022-05343-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05343-3

Keywords

Navigation