Skip to main content
Log in

Study of poly (organic palygorskite-methyl methacrylate)/poly(vinylidene fluoride-co-hexafluoropropylene) blended gel polymer electrolyte for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The composite membrane (PDFP-POPM) based on the blending of poly(vinylidene fluoride-co-hexafluoropropylene) (PDFP) and POPM (the copolymer of organic palygorskite and methyl methacrylate) was prepared by the phase-inversion method, and a gel polymer electrolyte (GPE) was obtained when the PDFP-POPM was activated by absorbing liquid electrolyte (LE). The SEM morphologies showed that the PDFP-POPM had a porous structure. The XRD results indicated that PDFP-POPM was an amorphous polymer and that the POPM could effectively suppress the crystallization of PDFP. The lithium ion transference number of GPE was higher than that of pristine POPM- and PDFP-based GPE. When the mass concentration of PDFP was 40%, the uptake of the PDFP-POPM and ionic conductivity of GPE reached the maximum values of 164% and 2.37 mS/cm, respectively. The electrochemical stability window of Li/GPE/SS batteries was over 4.7 V (vs. Li+/Li), and the Li/40PDFP-POPM GPE/LiFePO4 battery exhibited good cycling performance. The discharge capacity of the battery was 145mAh g−1 after 100 cycles and the columbic efficiency was over 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Castillo J, Qiao L, Santiago A, Judez X, Sáenz de Buruaga A, Jiménez-Martín G, Armand M, Zhang H, Li C (2022) Perspective of polymer-based solid-state Li-S batteries. Energy Mater 2(1):200003

    Google Scholar 

  2. Xiong X, Yan W, Zhu Y, Liu L, Fu L, Chen Y, Yu N, Wu Y, Wang B, Xiao R (2022) Li4Ti5O12 coating on copper foil as ion redistributor layer for stable lithium metal anode. Adv Energy Mater 12(13):2103112

    Article  CAS  Google Scholar 

  3. Yuan J-J, Sun C-C, Fang L-F, Song Y-Z, Yan Y, Qiu Z-L, Shen Y-J, Li H-Y, Zhu B-K (2021) A lithiated gel polymer electrolyte with superior interfacial performance for safe and long-life lithium metal battery. J Energy Chem 55:313–322

    Article  CAS  Google Scholar 

  4. Wang Y, Qiu J, Peng J, Li J, Zhai M (2017) One-step radiation synthesis of gel polymer electrolytes with high ionic conductivity for lithium-ion batteries. J Mater Chem A 5(24):12393–12399

    Article  CAS  Google Scholar 

  5. Dhatarwal P, Choudhary S, Sengwa RJ (2018) Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO–PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium ion batteries. Composites Commun 10:11–17

    Article  Google Scholar 

  6. Li H, Chen YM, Ma XT, Shi JL, Zhu BK, Zhu LP (2011) Gel polymer electrolytes based on active PVDF separator for lithium ion battery. I: preparation and property of PVDF/poly(dimethylsiloxane) blending membrane. J Membr Sci 379(1–2):397–402

    Article  CAS  Google Scholar 

  7. Wang G, Liu H, Liu J, Qiao S, Lu GM, Munroe P, Ahn H (2010) Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv Mater 22(44):4944–4948

    Article  CAS  Google Scholar 

  8. Song A, Huang Y, Zhong X, Cao H, Liu B, Lin Y, Wang M, Li X (2017) Gel polymer electrolyte with high performances based on pure natural polymer matrix of potato starch composite lignocellulose. Electrochim Acta 245:981–992

    Article  CAS  Google Scholar 

  9. Cheng X, Pan J, Zhao Y, Liao M, Peng H (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8(7):1702184–1702199

    Article  Google Scholar 

  10. Liu B, Huang Y, Cao HJ, Zhao L, Huang YX, Song A, Lin YH, Li X, Wang MS (2018) A novel porous gel polymer electrolyte based on poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries. J Membr Sci 545:140–149

    Article  CAS  Google Scholar 

  11. Kataoka H, Saito Y, Sakai T, Quartarone E, Mustarelli P (2000) Conduction mechanisms of PVDF-type gel polymer electrolytes of lithium prepared by a phase inversion process. J Phys Chem B 104(48):11460–11464

    Article  CAS  Google Scholar 

  12. Li Y, Zhu J, Zhu P, Yan C, Jia H, Kiyak Y, Zang J, He J, Dirican M, Zhang X (2018) Glass fiber separator coated by porous carbon nanofiber derived from immiscible PAN/PMMA for high-performance lithium-sulfur batteries. J Membr Sci 552:31–42

    Article  CAS  Google Scholar 

  13. Tian L, Wang M, Xiong L, Guo H, Huang C, Zhang H, Chen X (2018) The effect of different mixed organic solvents on the properties of p(OPal-MMA) gel electrolyte membrane for lithium ion batteries. Appl Sci 8(12):2587–2597

    Article  CAS  Google Scholar 

  14. Li W, Yu, Pang Y, Liu J, Yuan, Liu G, Hui, Wang Y, Gang, Xia Y, Yao (2017) A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv 7:23494–23501

    Article  CAS  Google Scholar 

  15. Yuan C, Li J, Han P, Lai Y, Zhang Z, Liu J (2013) Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework. J Power Sources 240:653–658

    Article  CAS  Google Scholar 

  16. Liu T, Chang ZW, Yin YB, Chen K, Zhang Y, Zhang XB (2018) The PVDF-HFP gel polymer electrolyte for Li-O2 battery. Solid State Ionics 318:88–94

    Article  CAS  Google Scholar 

  17. Khan S, Fang CY, Ma YC, ulHaq M, Nisar M, Xu G, Liu Y, Han GR (2021) High-performance PVDF-HFP based gel polymer electrolyte modified by core-shell SiO2-PMMA for electrochromic devices. J Electrochem Soc 168(2):022504

    Article  CAS  Google Scholar 

  18. Li X, Zhang M, He J, Wu D, Meng J, Ni P (2014) Effects of fluorinated SiO2 nanoparticles on the thermal and electrochemical properties of PP nonwoven/PVdF-HFP composite separator for Li-ion batteries. J Membr Sci 455:368–374

    Article  CAS  Google Scholar 

  19. Jeong H-S, Hong SC, Lee S-Y (2010) Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. J Membr Sci 364(1–2):177–182

    Article  CAS  Google Scholar 

  20. Kim KM, Park N-G, Ryu KS, Chang SH (2006) Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods. Electrochim Acta 51(26):5636–5644

    Article  CAS  Google Scholar 

  21. Deka M, Kumar A (2010) Enhanced electrical and electrochemical properties of PMMA–clay nanocomposite gel polymer electrolytes. Electrochim Acta 55(5):1836–1842

    Article  CAS  Google Scholar 

  22. Chen TT, Liao YH, Wang XS, Luo XY, Li XP, Li WS (2016) Investigation on high-safety lithium ion battery using polyethylene supported poly(methyl methacrylate-acrylonitrile-butyl acrylate) copolymer based gel electrolyte. Electrochim Acta 191:923–932

    Article  CAS  Google Scholar 

  23. Tan SM, Johan MR (2011) Effects of MnO2 nano-particles on the conductivity of PMMA-PEO-LiClO4-EC polymer electrolytes. Ionics 17(6):485–490

    Article  CAS  Google Scholar 

  24. Tian L, Xiong L, Chen X, Guo H, Zhang H, Chen X (2018) Enhanced electrochemical properties of gel polymer electrolyte with hybrid copolymer of organic palygorskite and methyl methacrylate. Materials 11(10):1814

    Article  Google Scholar 

  25. Ahmad AL, Farooqui UR, Hamid NA (2018) Porous (PVDF-HFP/PANI/GO) ternary hybrid polymer electrolyte membranes for lithium-ion batteries. RSC Adv 8(45):25725–25733

    Article  CAS  Google Scholar 

  26. Saikia D, Kumar A (2004) Ionic conduction in P(VDF-HFP)/PVDF–(PC + DEC)–LiClO 4 polymer gel electrolytes. Electrochim Acta 49(16):2581–2589

    Article  CAS  Google Scholar 

  27. Bose P, Deb D, Bhattacharya S (2019) Ionanofluid plasticized P(VDF-HFP) nanocomposite gel polymer electrolyte for safer, high energy density lithium batteries. Mater Chem Front 7:1–36

    Google Scholar 

  28. Khan S, Fang C, Ma Y, Haq Mu, Nisar M, Xu G, Liu Y, Han G (2021) High-performance PVDF-HFP based gel polymer electrolyte modified by core-shell SiO2-PMMA for electrochromic devices. J Electrochem Soc 168(2):022504

    Article  CAS  Google Scholar 

  29. Zhai W, Zhu Hj, Wang L, Liu XM, Yang H (2014) Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM]BF4 for lithium ion batteries. Electrochim Acta 133:623–630

    Article  CAS  Google Scholar 

  30. Xie H, Tang ZY, Li Z, He YB, Liu Y, Wang H (2008) PVDF-HFP composite polymer electrolyte with excellent electrochemical properties for Li-ion batteries. J Solid State Electrochem 12(11):1497–1502

    Article  CAS  Google Scholar 

  31. Yan W, Gao X, Jin X, Liang S, Xiong X, Liu Z, Wang Z, Chen Y, Fu L, Zhang Y, Zhu Y, Wu Y (2021) Nonporous gel electrolytes enable long cycling at high current density for lithium-metal anodes. ACS Appl Mater Interfaces 13(12):14258–14266

    Article  CAS  Google Scholar 

  32. Zhu YS, Xiao SY, Li MX, Chang Z, Wang FX, Gao J, Wu YP (2015) Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J Power Sources 288:368–375

    Article  CAS  Google Scholar 

  33. Idris NH, Rahman MM, Wang J-Z, Liu H-K (2012) Microporous gel polymer electrolytes for lithium rechargeable battery application. J Power Sources 201:294–300

    Article  CAS  Google Scholar 

  34. Saito Y, Kataoka H, Quartarone E, Mustarelli P (2002) Carrier migration mechanism of physically cross-linked polymer gel electrolytes based on PVDF membranes. J Phys Chem B 106(29):7200–7204

    Article  CAS  Google Scholar 

  35. Zhai W, Zhu H-J, Wang L, Liu X-M, Yang H (2014) Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM]BF4 for lithium ion batteries. Electrochim Acta 133:623–630

    Article  CAS  Google Scholar 

  36. Zhao M, Zuo X, Ma X, Xiao X, Liu J, Nan J (2017) Self-supported PVdF/P(VC-VAc) blended polymer electrolytes for LiNi0.5Mn1.5O4/Li batteries. J Membr Sci 532:30–37

    Article  CAS  Google Scholar 

  37. Thankamony RL, Chu H, Lim S, Yim T, Kim YJ, Kim TH (2014) Preparation and characterization of imidazolium-PEO-based Ionene/PVDF(HFP)/LiTFSI as a novel Gel polymer electrolyte. Macromol Res 23(1):38–44

    Article  Google Scholar 

  38. Xiao Y, Jin Z, He L, Ma S, Wang C, Mu X, Song L (2020) Synthesis of a novel graphene conjugated covalent organic framework nanohybrid for enhancing the flame retardancy and mechanical properties of epoxy resins through synergistic effect. Compos B Eng 182:107616

    Article  CAS  Google Scholar 

  39. Zhu Y, Wang F, Liu L, Xiao S, Chang Z, Wu Y (2013) Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy Environ Sci 6(2):618–624

    Article  CAS  Google Scholar 

  40. Wang YJ, Kim D (2007) PEGDA/PVdF/F127 gel type polymer electrolyte membranes for lithium secondary batteries. J Power Sources 166(1):202–210

    Article  CAS  Google Scholar 

  41. Gopalan A, Santhosh P, Manesh K, Nho J, Kim S, Hwang C, Lee K (2008) Development of electrospun PVdF–PAN membrane-based polymer electrolytes for lithium batteries. J Membr Sci 325(2):683–690

    Article  CAS  Google Scholar 

  42. Aram E, Ehsani M, Khonakdar HA (2015) Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte. Thermochim Acta 615:61–67

    Article  CAS  Google Scholar 

  43. Shi J, Xiong H, Yang Y, Shao H (2018) Nano-sized oxide filled composite PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium and sodium batteries. Solid State Ionics 326:136–144

    Article  CAS  Google Scholar 

  44. Bac A, Ciosek M, Bukat M, Marczewski M, Marczewska H, Wieczorek W (2006) The effect of type of the inorganic filler and dopant salt concentration on the PEO–LiClO4 based composite electrolyte–lithium electrode interfacial resistivity. J Power Sources 159(1):405–411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development (No. E1390104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinde Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, G., Guo, H., Bo, L. et al. Study of poly (organic palygorskite-methyl methacrylate)/poly(vinylidene fluoride-co-hexafluoropropylene) blended gel polymer electrolyte for lithium-ion batteries. J Solid State Electrochem 27, 455–465 (2023). https://doi.org/10.1007/s10008-022-05339-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05339-z

Keywords

Navigation