Skip to main content

Advertisement

Log in

Heterostructured electrodes of superior electrochemical performance CuCo2-NSs/NiCo2S4 for asymmetric hybrid capacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Here, we assembled a CuCo2-NSs/NiCo2S4 nano-flower clusters hetero-structured materials directly grown on nickel foam. The prepared material showed an extremely high capacitance of 3.10 F cm−2 with excellent reversibility. An important factor in achieving excellent performance is the heterogeneous structure. An asymmetric supercapacitor is constructed by placing CuCo2-NSs/NiCo2S4 and activated carbon electrodes parallel to each other. The asymmetric supercapacitor has a high energy density of 48.2 W h kg−1 at a power density of 245.0 W kg−1 and the capacity retention remains still 98.5% after 7000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun J, Xu C, Chen H (2021) A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors. J Materiomics 7:98–126

    Article  Google Scholar 

  2. Larcher D, Tarascon J-M (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  CAS  Google Scholar 

  3. Wang T, Chen H, Yu F, Zhao X, Wang H (2019) Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Stor Mater 16:545–573

    Google Scholar 

  4. Cui S, Gu S, Ding Y, Zhang J, Zhang Z, Hu Z (2018) Hollow mesoporous CuCo2O4 microspheres derived from metal organic framework: a novel functional materials for simultaneous H2O2 biosensing and glucose biofuel cell. Talanta 3:788–795

    Article  Google Scholar 

  5. Liu Y, Cao L, Cao C, Wang M, Leung K, Zeng S, Hung T, Chung C, Lu Z (2014) Facile synthesis of spinel CuCo2O4 nanocrystals as high-performance cathode catalysts for rechargeable Li-air batteries. Chem Commun 50:14635–14638

    Article  CAS  Google Scholar 

  6. Zhu S, Wang Z, Huang F, Zhang H, Li S (2017) Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. J Mater Chem A 5(20):9960–9969

    Article  CAS  Google Scholar 

  7. Zhao Y, Song Y, Wang B, Zhang Y, Zhu X, Zhang Y, Li W (2022) Hierarchical NiCo2@PEDOT/PMo12 core and shell architectures for high-performance supercapacitors materials technology. Mater Technol. https://doi.org/10.1080/10667857.2022.2137758

    Article  Google Scholar 

  8. Ammar AU, Yildirim ID, Bakan F, Erdem E (2021) ZnO and MXenes as electrode materials for supercapacitor devices. Beilstein J Nanotechnol 12:49–57

    Article  CAS  Google Scholar 

  9. Tuncer M, Bakan F, Gocmeza H, Erdem E (2019) Capacitive behaviour of nanocrystalline octacalcium phosphate (OCP) (Ca8H2(PO4)6·5H2O) as an electrode material for supercapacitors: biosupercaps. Nanoscale 11:18375

    Article  CAS  Google Scholar 

  10. Nekoeinia M, Salehriahi F, Moradlou O, Kazemi H, Yousefifinejad S (2018) Enhanced Fenton-like catalytic performance of N-doped graphene quantum dots incorporated CuCo2O4. New J Chem 42:9209–9220

    Article  CAS  Google Scholar 

  11. Zhang K, Zeng W, Zhang G, Hou S, Wang F, Wang T, Duan H (2015) Hierarchical CuCo2O4 nanowire/NiCo2O4 nanosheet core/shell arrays for high-performance supercapacitors. RSC Adv 5:69636–69641

    Article  CAS  Google Scholar 

  12. Naik KK, Sahoo S, Rout CS (2016) Facile electrochemical growth of spinel copper cobaltite nanosheets for non-enzymatic glucose sensing and supercapacitor applications. Microporous Mesoporous Mater 244:226–234

    Article  Google Scholar 

  13. Vijayakumar S, Lee S-H, Ryu K-S (2015) Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specifific capacitance. Electrochim Acta 182:979–986

    Article  CAS  Google Scholar 

  14. Pendashteh A, Rahmanifar MS, Kanerc RB, Mousavi MF (2014) Facile synthesis of nanostructured CuCo2O4 as a novel electrode material for high-rate supercapacitors. Chem Comm 50:1972–1975

    Article  CAS  Google Scholar 

  15. Zhu S, Zhang F, Lu H-G, Sheng J, Wang L, Li S-D, Han G, Li Y (2022) Flash nitrogen-doped graphene for high rate supercapacitors. ACS Mater Lett 4:1863–1871

    Article  CAS  Google Scholar 

  16. Chen H, Jiang J, Zhang Li, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883

    Article  CAS  Google Scholar 

  17. Ouyang Y, Ye H, Xia X, Jiao X, Li G, Mutahir S, Wang L, Mandler D, Lei W, Hao Q (2019) Hierarchical electrodes of NiCo2S4 nanosheetsanchored sulfur-doped Co3O4 nanoneedles with advanced performance for battery-supercapacitor hybrid devices. J Mater Chem A 7:3228–3237

    Article  CAS  Google Scholar 

  18. Zhou W, Cao X, Zeng Z, Shi W, Zhu Y, Yan Q, Liu H, Wang J, Zhang H (2013) One-step synthesis of Ni3S2 nanorod/Ni(OH)2 nanosheet core–shell nanostructures on a threedimensional graphene network for high-performance upercapacitors. Energy Environ Sci 6:2216

    Article  CAS  Google Scholar 

  19. Li D, Gong Y, Pan C (2016) Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci Rep 6:29788–29794

    Article  Google Scholar 

  20. Sui YW, Zhang YM, Hou PH, Qi JQ, Wei FX, He YZ, Meng QK, Sun Z (2017) Three-dimensional NiCo2S4 nanosheets as high-performance electrodes materials for supercapacitors. J Mater Sci 52:7100–7109

    Article  CAS  Google Scholar 

  21. Zhu S, Wang Y, Zhang J, Sheng J, Yang F, Wang M, Ni J, Jiang H, Li Y (2022) Jahn-Teller Effect directed bandgap tuning of birnessite for pseudocapacitive application. Energy Environ Mater. https://doi.org/10.1002/eem2.12382

    Article  Google Scholar 

  22. Buldu-Akturk M, Balcı-Ҫgıran Ö, Erdem E (2022) EPR investigation of point defects in HfB2 and their roles in supercapacitor device performances. Appl Phys Lett 120:153901

    Article  CAS  Google Scholar 

  23. Cheng J, Lu Y, Qiu K, Yan H, Xu J, Han L, Liu X, Luo J, Kim JK, Luo Y (2016) Hierarchical core/shell NiCo2O4/NiCo2O4 nanocactus arrays with dual-functionalities for high performance supercapacitors and Li-ion Batteries. Sci Rep 5:12099

    Article  Google Scholar 

  24. Jiyu Hu, Qian F, Song G, Wang L (2016) Hierarchical heterostructures of NiCo2O4/XMoO4 (X=Ni, Co) as an electrode material for high-performance supercapacitors. Nanoscale Res Lett 11:257

    Article  Google Scholar 

  25. Liu H, Dai M, Zhao D, Xiang Wu, Wang B (2020) Realizing superior electrochemical performance of asymmetric capacitors through tailoring electrode architectures. ACS Appl Energy Mater 3:7004–7010

    Article  CAS  Google Scholar 

  26. Zhao Y, Zhang Y, Wang Q, Song Y, Zhang Y, Liu L, Li W (2022) Controlled preparation of NiCo-LDH/CuCo2O4/Ti3C2 core−shell structure for high performance asymmetric supercapacitor. Mater Technol. https://doi.org/10.1080/10667857.2022.2072604

    Article  Google Scholar 

  27. Marco J et al (2000) Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: An XRD, XANES, EXAFS, and XPS study. J Solid State Chem 153:74–81

    Article  CAS  Google Scholar 

  28. Choudhury T, Saied SO, Sullivan JL, Abbot AM (1989) Reduction of oxides of iron, cobalt, titanium and niobium by lowenergy ion bombardment. J Phys D Appl Phys 22:1185

    Article  CAS  Google Scholar 

  29. Hao J, Peng S, Qin T, Wang Z, Wen Y, He D, Zhang J, Zhang Z, Fan X, Cao G (2017) Fabrication of hybrid Co3O4/NiCo2O4 nanosheets sandwiched by nanoneedles for high-performance supercapacitors using a novel electrochemical ion exchange. Sci China Mater 60(12):1168–1178

    Article  CAS  Google Scholar 

  30. Kong D, Cheng C, Wang Y, Wong JI, Yang Y, Yang HY (2015) Three-dimensional Co3O4/C/Ni3S2 sandwich-structured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors. J Mater Chem A 3:16150–16161

    Article  CAS  Google Scholar 

  31. Kuang M, Liu XY, Dong F, Zhang YX (2015) Tunable design of layered CuCo2O4 nanosheets /MnO2 nanoflflakes core-shell arrays on Ni foam for highperformance supercapacitors. J Mater Chem A 3:21528–21536

    Article  CAS  Google Scholar 

  32. Shanmugavani A, Selvan RK (2016) Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim Acta 188:852–862

    Article  CAS  Google Scholar 

  33. Tang CH, Yin X, Gong H (2013) Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4/Ni(OH)2 core–shell electrode. ACS Appl Mater Interfaces 5:10574–10582

    Article  CAS  Google Scholar 

  34. Zhang X, Zhao Y, Xu C (2014) Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. Nanoscale 6:3638–3646

    Article  CAS  Google Scholar 

  35. Kuang M, Wen ZQ, Guo XL, Zhang SM, Zhang YX (2014) Engineering firecracker-like beta-manganese dioxides/spinel nickel cobaltates nanostructures for high-performance supercapacitors. J Power Sources 270:426–433

    Article  CAS  Google Scholar 

  36. Zhang Y, Liu H, Huang M, Zhang JM, Zhang W, Dong F, Zhang YX (2017) Engineering ultrathin Co(OH)2 nanosheets on dandelion-like CuCo2O4 microspheres for binder-free supercapacitors. Chem Electro Chem 4:721–727

    CAS  Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation of Liaoning Province (2019-ZD-0080) and the Education department funding of Liaoning province (LQ2020013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanan Zhao, Yaqian Zhang or Wenze Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1367 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Li, Y., Song, Y. et al. Heterostructured electrodes of superior electrochemical performance CuCo2-NSs/NiCo2S4 for asymmetric hybrid capacitor. J Solid State Electrochem 27, 391–397 (2023). https://doi.org/10.1007/s10008-022-05334-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05334-4

Keywords

Navigation