Skip to main content

Advertisement

Log in

Bi2S3-sensitized TiO2 nanorods by bottom-up approach for photoelectrochemical solar cell

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Bismuth sulfide (Bi2S3)-sensitized titanium dioxide (TiO2) nanorods have been successfully synthesized by a simple and cost-effective chemical deposition method onto the conducting glass substrates. Bi2S3 nanoparticles are sensitized over the hydrothermally grown TiO2 nanorods by using successive ionic layer adsorption and reaction (SILAR) method. The structural, morphological, optical, and electrochemical studies were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible–near infrared (UV–Vis–NIR) spectroscopy, electrochemical impedance spectroscopy (EIS), etc. XRD pattern reveals the formation of pure rutile tetragonal TiOwith orthorhombic Bi2S3 crystal structure. SEM images show the formation of Bi2S3-sensitized TiO2 nanorods. The diameter of the nanorods is ~ 250 nm, and the size of Bi2S3 nanoparticles is ~ 100 nm. The films show hydrophilic nature which is beneficial for the photoelectrochemical performance of the photoanodes. The optimized photoanode shows an improved short-circuit photocurrent density of 421 µA/cm2 with a power conversion efficiency of 0.06% in polysulfide electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Esparza D, Zarazúa I, López-Luke T, Carriles R, Torres-Castro A, De la Rosa E (2015) Photovoltaic properties of Bi2S3 and CdS quantum dot sensitized TiO2 solar cells. Electrochim Acta 180:486–492

    Article  CAS  Google Scholar 

  2. Nikam PR, Baviskar PK, Sali JV, Gurav KV, Kim JH, Sankapal BR (2015) SILAR coated Bi2S3 nanoparticles on vertically aligned ZnO nanorods: synthesis and characterizations. Ceram Int 41(9):10394–10399

    Article  CAS  Google Scholar 

  3. Dutta AK, Maji SK, Mitra K, Sarkar A, Saha N, Ghosh AB, Adhikary B (2014) Single source precursor approach to the synthesis of Bi2S3 nanoparticles: a new amperometric hydrogen peroxide biosensor. Sens Actuators, B Chem 192:578–585

    Article  CAS  Google Scholar 

  4. Bhat TS, Devan RS, Mali SS, Kamble AS, Pawar SA, Kim IY, Ma YR, Hong CK, Kim JH, Patil PS (2014) Photoelectrochemically active surfactant free single step hydrothermal mediated titanium dioxide nanorods. J Mater Sci: Mater Electron 25(10):4501–4511

    CAS  Google Scholar 

  5. Bhat TS, Mali SS, Korade SD, Shaikh JS, Karanjkar MM, Hong CK, Kim JH, Patil PS (2017) Mesoporous architecture of TiO2 microspheres via controlled template assisted route and their photoelectrochemical properties. J Mater Sci: Mater Electron 28(1):304–316

    CAS  Google Scholar 

  6. Bhat TS, Vanalakar SA, Devan RS, Mali SS, Pawar SA, Ma YR, Hong CK, Kim JH, Patil PS (2016) Compact nanoarchitectures of lead selenide via successive ionic layer adsorption and reaction towards optoelectronic devices. J Mater Sci: Mater Electron 27(5):4996–5005

    CAS  Google Scholar 

  7. Bhat TS, Bhogale SB, Patil SS, Pisal SH, Phaltane SA, Patil PS (2021) Synthesis and characterization of hexagonal zinc oxide nanorods for eosin-Y dye sensitized solar cell. Mater Today Proc 43:2800–2804

    CAS  Google Scholar 

  8. Pawar SA, Devan RS, Patil DS, Burungale VV, Bhat TS, Mali SS, Shin SW, Ae JE, Hong CK, Ma YR, Kim JH (2014) Hydrothermal growth of photoelectrochemically active titanium dioxide cauliflower-like nanostructures. Electrochim Acta 117:470–479

    Article  CAS  Google Scholar 

  9. Bhat TS, Mali SS, Sheikh AD, Korade SD, Pawar KK, Hong CK, Kim JH, Patil PS (2017) TiO2/PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route. Opt Mater 73:781–792

    Article  CAS  Google Scholar 

  10. Banerjee AN (2011) The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnol Sci Appl 4:35

    Article  CAS  Google Scholar 

  11. Rincón ME, Campos J, Suárez R (1999) A comparison of the various thermal treatments of chemically deposited bismuth sulfide thin films and the effect on the structural and electrical properties. J Phys Chem Solids 60(3):385–392

    Article  Google Scholar 

  12. Bernechea M, Cao Y, Konstantatos G (2015) Size and bandgap tunability in Bi2S3 colloidal nanocrystals and its effect in solution processed solar cells. J Mater Chem A 3(41):20642–20648

    Article  CAS  Google Scholar 

  13. Salomé M, Garcia-Gomez NA, Garza-Tovar LL, García-Gutiérrez DI, Sánchez EM (2017) Ultrasonic irradiation-assisted synthesis of Bi2S3 nanoparticles in aqueous ionic liquid at ambient condition. Ultrason Sonochem 36:95–100

    Article  Google Scholar 

  14. Gongadze E, Kabaso D, Bauer S, Park J, Schmuki P, Iglic A (2013) Adhesion of osteoblasts to a vertically aligned TiO2 nanotube surface. Mini Rev Med Chem 13(2):194–200

    CAS  Google Scholar 

  15. Patil JV, Mali SS, Shaikh JS, Bhat TS, Hong CK, Kim JH, Patil PS (2018) Hydrothermally grown 3D hierarchical TiO2 based on electrochemically anodized 1D TiO2 nanostructure for supercapacitor. Appl Phys A 124(9):1–11

    Article  Google Scholar 

  16. Kim JY, Shin KY, Raza MH, Pinna N, Sung YE (2019) Vertically aligned TiO2/ZnO nanotube arrays prepared by atomic layer deposition for photovoltaic applications. Korean J Chem Eng 36(7):1157–1163

    Article  CAS  Google Scholar 

  17. Qin DD, Bi YP, Feng XJ, Wang W, Barber GD, Wang T, Song YM, Lu XQ, Mallouk TE (2015) Hydrothermal growth and photoelectrochemistry of highly oriented, crystalline anatase TiO2 nanorods on transparent conducting electrodes. Chem Mater 27(12):4180–4183

    Article  CAS  Google Scholar 

  18. Bhat TS, Mali SS, Patil JV, Killedar ST, Desai TR, Patil AN, Hong CK, Dongale TD, Patil PS (2020) Nanogranular cadmium sulfoselenide thin films grown by successive ionic layer adsorption and reaction method for optoelectronic applications. Physica Status Solidi (a) 217(15):2000002

  19. Valkonen MP, Kanniainen T, Lindroos S, Leskelä M, Rauhala E (1997) Growth of ZnS, CdS and multilayer ZnS/CdS thin films by SILAR technique. Appl Surf Sci 115(4):386–392

    Article  CAS  Google Scholar 

  20. Lee H, Leventis HC, Moon SJ, Chen P, Ito S, Haque SA, Torres T, Nüesch F, Geiger T, Zakeeruddin SM, Grätzel M (2009) PbS and CdS quantum dot sensitized solid state solar cells: “old concepts, new results.” Adv Func Mater 19(17):2735–2742

    Article  CAS  Google Scholar 

  21. Bhat TS, Mali SS, Sheikh AD, Tarwal NL, Korade SD, Hong CK, Kim JH, Patil PS (2018) ZnS passivated PbSe sensitized TiO2 nanorod arrays to suppress photocorrosion in photoelectrochemical solar cells. Mater Today Commun 16:186–193

    Article  CAS  Google Scholar 

  22. Yang J, Jin Z, Liu T, Li C, Shi Y (2008) An investigation into effect of cationic precursor solutions on formation of CuInSe2 thin films by SILAR method. Sol Energy Mater Sol Cells 92(6):621–627

    Article  CAS  Google Scholar 

  23. Wang Q, Liu Z, Jin R, Wang Y, Gao S (2019) SILAR preparation of Bi2S3 nanoparticles sensitized TiO2 nanotube arrays for efficient solar cells and photocatalysts. Sep Purif Technol 210:798–803

    Article  CAS  Google Scholar 

  24. Hong-Liang M, Jun-Yi Y, Bo L, Guo-Hong M (2007) Phase transformation and nanograting structure on TiO2 rutile single crystal induced by infrared femtosecond laser. Chin Phys 16(11):3328

    Article  Google Scholar 

  25. Li J, Jin L, Fang L, Zhang M, Wang Y, Jiang X, Lv J, He G, Sun Z (2018) Synthesis and characterization of Bi2S3 quantum dot-sensitized TiO2 nanorod arrays coated with ZnSe passivation layers. Appl Surf Sci 456:694–700

    Article  CAS  Google Scholar 

  26. Zhao Y, Chua KTE, Gan CK, Zhang J, Peng B, Peng Z, Xiong Q (2011) Phonons in Bi 2 S 3 nanostructures: Raman scattering and first-principles studies. Phys Rev B 84(20):205330

    Article  Google Scholar 

  27. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61(1):1–7

    Article  Google Scholar 

  28. Yeh MH, Lee CP, Chou CY, Lin LY, Wei HY, Chu CW, Vittal R, Ho KC (2011) Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte. Electrochim Acta 57:277–284

    Article  CAS  Google Scholar 

  29. Bhat TS, Shinde SS, Bhat VS, Patil PS (2021) Hydrothermal synthesis of one-dimensional, rutile TiO2 nanograss arrays for photoelectrochemical solar cell. Mater Today Proc 43:2814–2819

    CAS  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to the Physics Instrumentation Facility Centre (PIFC) and the Department of Physics, Shivaji University, Kolhapur, for providing sample characterization facilities. Author Mr S. S. Patil would like to acknowledge to Golden Jubilee Research Fellowship (GJRF), Shivaji University, Kolhapur, M.S., India for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. S. Bhat or P. S. Patil.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 475 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambre, S.K., Patil, S.S., Bhat, T.S. et al. Bi2S3-sensitized TiO2 nanorods by bottom-up approach for photoelectrochemical solar cell. J Solid State Electrochem 27, 337–343 (2023). https://doi.org/10.1007/s10008-022-05328-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05328-2

Keywords

Navigation