Skip to main content
Log in

Optimisation of the ethylene glycol reduction method for the synthesis of platinum-ceria-carbon materials as catalysts for the methanol oxidation reaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Novel platinum-ceria-Ketjenblack carbon bifunctional electrocatalysts with flower-shaped ceria crystals were synthesised for conducting the methanol oxidation reaction. The deposition of flower-shaped ceria particles onto carbon support was achieved through the amino acid (L-histidine)-assisted solvothermal synthesis method. The ethylene glycol reduction method was modified to improve the Pt deposition efficiency, which was confirmed by the thermogravimetric analysis results. The key parameters influencing the polyol reduction reaction kinetics and growth of Pt nanoparticles (NPs) are the ultrasound sonication, the use of metallic sodium, the concentration of sodium ions and the amount of ethylene glycol in the reaction mixture. The microwave treatment in the polyol reduction synthesis increased the number of active sites for the formation of Pt NPs, which led to the increase of electrochemically active surface area from 24 to 55 mPt2 gPt−1. The physicochemical characterisation methods revealed the formation of the flower-shaped ceria crystals and the excellent distribution of small Pt NPs (3.0–4.2 nm) on the support surface. The catalysts synthesised were micro-mesoporous and specific surface area was 280–330 m2 g−1. There is specific interaction between Pt NPs and ceria particles. The cyclic voltammetry and chronoamperometry tests in 0.5 mol dm−3 H2SO4 solution with 1 mol dm−3 CH3OH confirmed the high MOR activity of catalysts prepared. The accelerated durability tests were performed with most active catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Corti HR, Gonzalez ER (2014) Direct alcohol fuel cells. Springer, Netherlands, Dordrecht

    Book  Google Scholar 

  2. Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280:1735–1737. https://doi.org/10.1126/science.280.5370.1735

    Article  CAS  Google Scholar 

  3. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892. https://doi.org/10.1021/jp047349j

    Article  CAS  Google Scholar 

  4. Chou H-L, Hwang B-J, Sun C-L (2013) Chapter 9 - Catalysis in fuel cells and hydrogen production. In: Suib SL (ed) New and future developments in catalysis. Elsevier, Amsterdam, pp 217–270

    Chapter  Google Scholar 

  5. Corti H (2013) Direct alcohol fuel cells: materials, performance, durability and applications. Springer, New York

    Google Scholar 

  6. Atla SB, Wu M-N, Pan W, Hsiao YT, Sun A-C, Tseng M-J, Chen Y-J, Chen C-Y (2014) Characterization of CeO2 crystals synthesized with different amino acids. Mater Charact 98:202–208. https://doi.org/10.1016/j.matchar.2014.10.022

    Article  CAS  Google Scholar 

  7. Xu C, Shen P, kang, Liu Y (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164:527–531. https://doi.org/10.1016/j.jpowsour.2006.10.071

    Article  CAS  Google Scholar 

  8. Wei Y-C, Liu C-W, Kang W-D, Lai C-M, Tsai L-D, Wang K-W (2011) Electro-catalytic activity enhancement of Pd–Ni electrocatalysts for the ethanol electro-oxidation in alkaline medium: The promotional effect of CeO2 addition. J Electroanal Chem 660:64–70. https://doi.org/10.1016/j.jelechem.2011.06.006

    Article  CAS  Google Scholar 

  9. Sun C, Chen L (2009) Controllable synthesis of shuttle-shaped ceria and its catalytic properties for CO oxidation. Eur J Inorg Chem 2009:3883–3887. https://doi.org/10.1002/ejic.200900362

    Article  CAS  Google Scholar 

  10. Antolini E, Perez J (2011) The use of rare earth-based materials in low-temperature fuel cells. Int J Hydrog Energy 36:15752–15765. https://doi.org/10.1016/j.ijhydene.2011.08.104

    Article  CAS  Google Scholar 

  11. Perkins CL, Henderson MA, Peden CHF, Herman GS (2001) Self-diffusion in ceria. J Vac Sci Technol Vac Surf Films 19:1942–1946. https://doi.org/10.1116/1.1336831

    Article  CAS  Google Scholar 

  12. Xu C, Shen PK (2004) Novel Pt/CeO2/C catalysts for electrooxidation of alcohols in alkaline media. Chem Commun. https://doi.org/10.1039/B408589B

    Article  Google Scholar 

  13. Tolmachev YuV, Petrii OA (2017) Pt–Ru electrocatalysts for fuel cells: developments in the last decade. J Solid State Electrochem 21:613–639. https://doi.org/10.1007/s10008-016-3382-5

    Article  CAS  Google Scholar 

  14. Dai S, Zhang J, Fu Y, Li W (2018) Histidine-assisted synthesis of CeO2 nanoparticles for improving the catalytic performance of Pt-based catalysts in methanol electrooxidation. New J Chem 42:18159–18165. https://doi.org/10.1039/C8NJ03972K

    Article  CAS  Google Scholar 

  15. Chung DY, Lee K-J, Sung Y-E (2016) Methanol electro-oxidation on the Pt surface: revisiting the cyclic voltammetry interpretation. J Phys Chem C 120:9028–9035. https://doi.org/10.1021/acs.jpcc.5b12303

    Article  CAS  Google Scholar 

  16. Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR (2004) Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J Am Chem Soc 126:8028–8037. https://doi.org/10.1021/ja0495819

    Article  CAS  Google Scholar 

  17. Quinson J, Dworzak A, Simonsen SB, Theil Kuhn L, Jensen KMØ, Zana A, Oezaslan M, Kirkensgaard JJK, Arenz M (2021) Surfactant-free synthesis of size controlled platinum nanoparticles: insights from in situ studies. Appl Surf Sci 549:149263. https://doi.org/10.1016/j.apsusc.2021.149263

    Article  CAS  Google Scholar 

  18. Vaarmets K, Valk P, Nerut J, Tallo I, Aruväli J, Sepp S, Lust E (2017) Rotating disk electrode study of carbon supported Pt-nanoparticles synthesized using microwave-assisted method. ECS Trans 80:743–755. https://doi.org/10.1149/08008.0743ecst

    Article  CAS  Google Scholar 

  19. Valk P, Nerut J, Kanarbik R, Tallo I, Aruväli J, Lust E (2018) Synthesis and characterization of platinum-cerium oxide nanocatalysts for methanol oxidation. J Electrochem Soc 165:F315. https://doi.org/10.1149/2.0781805jes

    Article  CAS  Google Scholar 

  20. Schrader I, Warneke J, Neumann S, Grotheer S, Swane AA, Kirkensgaard JJK, Arenz M, Kunz S (2015) Surface chemistry of “unprotected” nanoparticles: a spectroscopic investigation on colloidal particles. J Phys Chem C 119:17655–17661. https://doi.org/10.1021/acs.jpcc.5b03863

    Article  CAS  Google Scholar 

  21. Takahashi K, Yokoyama S, Matsumoto T, Huaman JLC, Kaneko H, Piquemal J-Y, Miyamura H, Balachandran J (2016) Towards a designed synthesis of metallic nanoparticles in polyols – elucidation of the redox scheme in a cobalt–ethylene glycol system. New J Chem 40:8632–8642. https://doi.org/10.1039/C6NJ01738J

    Article  CAS  Google Scholar 

  22. Sharma R, Wang Y, Li F, Chamier J, Andersen SM (2019) Particle size-controlled growth of carbon-supported platinum nanoparticles (Pt/C) through water-assisted polyol synthesis. ACS Omega 4:15711–15720. https://doi.org/10.1021/acsomega.9b02351

    Article  CAS  Google Scholar 

  23. Zhang G, Shen Z, Liu M, Guo C, Sun P, Yuan Z, Li B, Ding D, Chen T (2006) Synthesis and characterization of mesoporous ceria with hierarchical nanoarchitecture controlled by amino acids. J Phys Chem B 110:25782–25790. https://doi.org/10.1021/jp0648285

    Article  CAS  Google Scholar 

  24. Herricks T, Chen J, Xia Y (2004) Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate. Nano Lett 4:2367–2371. https://doi.org/10.1021/nl048570a

    Article  CAS  Google Scholar 

  25. Balzar D (1999) Voigt function model in diffraction-line broadening analysis. In: Defect and microstructure analysis by diffraction. International Union of Crystallography, Oxford, p 785

  26. Ravikovitch PI, Neimark AV (2001) Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids Surf Physicochem Eng Asp 187–188:11–21. https://doi.org/10.1016/S0927-7757(01)00614-8

    Article  Google Scholar 

  27. Jagiello J, Olivier JP (2013) Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 19:777–783. https://doi.org/10.1007/s10450-013-9517-4

    Article  CAS  Google Scholar 

  28. Jagiello J, Olivier JP (2013) 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55:70–80. https://doi.org/10.1016/j.carbon.2012.12.011

    Article  CAS  Google Scholar 

  29. Garsany Y, Baturina OA, Swider-Lyons KE, Kocha SS (2010) Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal Chem 82:6321–6328. https://doi.org/10.1021/ac100306c

    Article  CAS  Google Scholar 

  30. Shinozaki K, Zack JW, Pylypenko S, Pivovar BS, Kocha SS (2015) Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique II. Influence of ink formulation, catalyst layer uniformity and thickness. J Electrochem Soc 162:F1384–F1396. https://doi.org/10.1149/2.0551512jes

    Article  CAS  Google Scholar 

  31. Zhang D, Fu H, Shi L, Pan C, Li Q, Chu Y, Yu W (2007) Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. Inorg Chem 46:2446–2451. https://doi.org/10.1021/ic061697d

    Article  CAS  Google Scholar 

  32. Nguyen V-L, Ohtaki M, Ngo VN, Cao M-T, Nogami M (2012) Structure and morphology of platinum nanoparticles with critical new issues of low- and high-index facets. Adv Nat Sci Nanosci Nanotechnol 3:025005. https://doi.org/10.1088/2043-6262/3/2/025005

    Article  CAS  Google Scholar 

  33. Weiss IM, Muth C, Drumm R, Kirchner HOK (2018) Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophys 11:2. https://doi.org/10.1186/s13628-018-0042-4

    Article  CAS  Google Scholar 

  34. Nakagawa K, Tezuka Y, Ohshima T, Katayama M, Ogata T, Sotowa K-I, Katoh M, Sugiyama S (2016) Formation of cerium carbonate hydroxide and cerium oxide nanostructures by self-assembly of nanoparticles using surfactant template and their catalytic oxidation. Adv Powder Technol 27:2128–2135. https://doi.org/10.1016/j.apt.2016.07.026

    Article  CAS  Google Scholar 

  35. Quinson J, Kacenauskaite L, Bucher J, Simonsen SB, Theil Kuhn L, Oezaslan M, Kunz S, Arenz M (2019) Controlled synthesis of surfactant-free water-dispersible colloidal platinum Nanoparticles by the Co4Cat Process. Chemsuschem 12:1229–1239. https://doi.org/10.1002/cssc.201802897

    Article  CAS  Google Scholar 

  36. Loridant S (2021) Raman spectroscopy as a powerful tool to characterize ceria-based catalysts. Catal Today 373:98–111. https://doi.org/10.1016/j.cattod.2020.03.044

    Article  CAS  Google Scholar 

  37. Brogan MS, Dines TJ, Cairns JA (1994) Raman spectroscopic study of the Pt–CeO2 interaction in the Pt/Al2O3 –CeO 2 catalyst. J Chem Soc Faraday Trans 90:1461–1466. https://doi.org/10.1039/FT9949001461

    Article  CAS  Google Scholar 

  38. Lu Q, Wang Z, Tang Y, Huang C, Zhang A, Liu F, Liu X, Shan B, Chen R (2022) Well-controlled Pt–CeO2–nitrogen doped carbon triple-junction catalysts with enhanced activity and durability for the oxygen reduction reaction. Sustain Energy Fuels 6:2989–2995. https://doi.org/10.1039/D2SE00586G

    Article  CAS  Google Scholar 

  39. Solla-Gullón J, Rodríguez P, Herrero E, Aldaz A, M. Feliu J (2008) Surface characterization of platinum electrodes. Phys Chem Chem Phys 10:1359–1373. https://doi.org/10.1039/B709809J

    Article  Google Scholar 

  40. Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327:353–376. https://doi.org/10.1016/0022-0728(92)80162-W

    Article  CAS  Google Scholar 

  41. Geniès L, Faure R, Durand R (1998) Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim Acta 44:1317–1327. https://doi.org/10.1016/S0013-4686(98)00254-0

    Article  Google Scholar 

  42. Meier JC, Galeano C, Katsounaros I, Witte J, Bongard HJ, Topalov AA, Baldizzone C, Mezzavilla S, Schüth F, Mayrhofer KJJ (2014) Design criteria for stable Pt/C fuel cell catalysts. Beilstein J Nanotechnol 5:44–67. https://doi.org/10.3762/bjnano.5.5

    Article  CAS  Google Scholar 

  43. Zhao J, Chen W, Zheng Y (2009) Effect of ceria on carbon supported platinum catalysts for methanol electrooxidation. Mater Chem Phys 113:591–595. https://doi.org/10.1016/j.matchemphys.2008.07.107

    Article  CAS  Google Scholar 

  44. Feng Y-Y, Hu H-S, Song G-H, Si S, Liu R-J, Peng D-N, Kong D-S (2019) Promotion effects of CeO2 with different morphologies to Pt catalyst toward methanol electrooxidation reaction. J Alloys Compd 798:706–713. https://doi.org/10.1016/j.jallcom.2019.05.287

    Article  CAS  Google Scholar 

  45. Chen W, Xue J, Bao Y, Feng L (2020) Surface engineering of nano-ceria facet dependent coupling effect on Pt nanocrystals for electro-catalysis of methanol oxidation reaction. Chem Eng J 381:122752. https://doi.org/10.1016/j.cej.2019.122752

    Article  CAS  Google Scholar 

  46. Xie X-W, Lv J-J, Liu L, Wang A-J, Feng J-J, Xu Q-Q (2017) Amino acid-assisted fabrication of uniform dendrite-like PtAu porous nanoclusters as highly efficient electrocatalyst for methanol oxidation and oxygen reduction reactions. Int J Hydrog Energy 42:2104–2115. https://doi.org/10.1016/j.ijhydene.2016.11.055

    Article  CAS  Google Scholar 

  47. Duan W, Li A, Chen Y, Zhang J, Zhuo K (2019) Amino acid-assisted preparation of reduced graphene oxide-supported PtCo bimetallic nanospheres for electrocatalytic oxidation of methanol. J Appl Electrochem 49:413–421. https://doi.org/10.1007/s10800-019-01297-z

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the EU through the European Regional Development Fund under project TK 141 “Advanced materials and high-technology devices for energy recuperation systems” (grant number 2014–2020.4.01.15–0011) and by the Estonian Research Council (grant number PUT PRG 676).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaak Nerut or Enn Lust.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.Q.V., Nerut, J., Kasuk, H. et al. Optimisation of the ethylene glycol reduction method for the synthesis of platinum-ceria-carbon materials as catalysts for the methanol oxidation reaction. J Solid State Electrochem 27, 313–326 (2023). https://doi.org/10.1007/s10008-022-05326-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05326-4

Keywords

Navigation