Skip to main content

Advertisement

Log in

Unveiling the electrochemistry effect on microsphere and nanorod morphology of NaSn2(PO4)3 anode for lithium/sodium batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

NASICON type NaSn2(PO4)3 (NSP) microspheres and nanorods were developed using a modified Pechini method and tested as anode materials for Lithium/Sodium storage applications. According to cyclic voltammetry investigation, NSP is associated with the conversion process between Sn and Sn (PO4)3 and the alloy reaction between Sn and NaxSn as an anode material for sodium-ion batteries, similar to lithium-ion batteries. The electrochemistry results revealed that NSPnr (nanorod) performs better in terms of capacity, cyclic stability, and rate capability than microspheres for sodium-ion batteries (for example, the specific capacity of NSPnr: 358 mAh g−1 and NSPms: 301 mAh g−1 at 200 mAg−1 over 200 cycles). The higher capacity of the NSPnr was derived from the large interlayer distance of nanorods, and the crystalline nature of the material resulted in increased kinetics of Na-ions and improved electrochemistry performances. However, in lithium-ion batteries, the NSP microsphere exhibits superior specific capacity and excellent cycling stability than NSP nanorods. This could be attributed to their spherical morphology, smaller crystallite size, and higher oxygen vacancy when processed by air. The excellent electrochemical performance of the NSPms electrode could be attributed to the well-dispersed spherical-shaped particle morphology, which allows fast Li+-ion migration during the electrochemical lithiation/delithiation process, particularly at high current density. The maximum capacity of 361 mAh g−1 and 227 mAh g−1 was observed when tested at high current densities of 2 A g−1 and 3 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wu Y, Huang L, Huang XK, Guo X, Liu D, Zheng D, Zhang X, Ren R, Qu D, Chen JH (2017) A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ Sci 10:1854–1861

    Article  CAS  Google Scholar 

  2. Zubi G, Lopez RD, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: State of the art and future perspectives. Renew Sustain Energy Rev 89:292–308

    Article  Google Scholar 

  3. Hesse HC, Schimpe M, Kucevic D, Jossen A (2017) Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies 10:2107

    Article  Google Scholar 

  4. He J, Wei Y, Zhai T, Li H (2018) Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries. Mater Chem Front 2:437–455

    Article  CAS  Google Scholar 

  5. Li F, Wei Z, Manthiram A, Feng Y, Ma J, Mai L (2019) Sodium-based batteries: from critical materials to battery systems. J Mater Chem A 7:9406–9431

    Article  CAS  Google Scholar 

  6. Palaniyandy N (2020) Recent developments on layered 3d-transtition metal oxide cathode materials for sodium-ion batteries. Curr Opin Electrochem 21:319–326

    Article  CAS  Google Scholar 

  7. Peters JF, Cruz AP, Weil M (2019) Exploring the Economic Potential of Sodium-Ion Batteries. Batteries 5:10

    Article  CAS  Google Scholar 

  8. Wang PF, You Y, Yin YX, Guo YG (2018) Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance. Adv Energy Mater 8:1701912

    Article  Google Scholar 

  9. Palaniyandy N, Reddy MV, Nalini B, Saravanan P, Vinod VTP, Cernik M, Chowdari BVR (2016) Spark plasma-sintered Sn-based intermetallic alloys and their Li-storage studies. J Solid State Chem 20:1743–1751

    Google Scholar 

  10. Mou H, Xiao W, Miao C, Li R, Yu L (2020) Tin and tin compound materials as anodes in lithium-ion and sodium-ion batteries: a review. Front Chem 8:141

    Article  CAS  Google Scholar 

  11. Liang S, Cheng YJ, Zhu J, Xia Y, Buschbaum PM (2020) A chronicle review of nonsilicon (Sn, Sb, Ge)‐based lithium/sodium‐ion battery alloying anodes. Small Methods 4:2000218

    Article  CAS  Google Scholar 

  12. Palaniyandy N, Reddy MV, Nalini B, Kalpana M, Chowdari BVR (2015) Sn-based intermetallic alloy anode materials for the application of lithium ion batteries. Electrochim Acta 161:261–268

    Article  Google Scholar 

  13. Nithyadharseni P, Reddy MV, Ozoemena KI, Ezema FI, Balakrishna RG, Chowdari BVR (2016) Electrochemical performance of BaSnO3 anode material for lithium-ion battery prepared by molten salt method. J Electrochem Soc 163:A540

    Article  CAS  Google Scholar 

  14. Liu X, Najam T, Yasin G, Kumar M, Wang M (2021) One-pot synthesis of high-performance tin chalcogenides/C anodes for Li-ion batteries. ACS Omega 6:17391–17399

    Article  CAS  Google Scholar 

  15. Li Z, Ding J, Mitlin D (2015) Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res 48:1657–1665

    Article  CAS  Google Scholar 

  16. Liu YC, Zhang N, Jiao L, Tao Z, Chen J (2015) Ultrasmall Sn Nanoparticles Embedded in Carbon as High-Performance Anode for Sodium-Ion Batteries. Adv Funct Mater 25:214–220

    Article  CAS  Google Scholar 

  17. Xie X, Kretschmer K, Zhang J, Sun B, Su D, Wang G (2015) Sn@ CNT nanopillars grown perpendicularly on carbon paper: a novel free-standing anode for sodium ion batteries. Nano Energy 13:208–217

    Article  CAS  Google Scholar 

  18. Nithyadharseni P, Abhilash KP, Petnikota S, Anilkumar MR, Jose R, Ozoemena KI, Vijayaraghavan R, Kulkarni P, Balakrishna G, Chowdari BVR, Adams S, Reddy MV (2017) Synthesis and lithium storage properties of Zn, Co and Mg doped SnO2 nano materials. Electrochim Acta 247:358–370

    Article  CAS  Google Scholar 

  19. Gao C, Jiang Z, Wang P, Jensen LR, Zhang Y, Yue Y (2020) Optimized assembling of MOF/SnO2/Graphene leads to superior anode for lithium ion batteries. Nano Energy 74:104868

    Article  CAS  Google Scholar 

  20. Yang X, Liang HJ, Yu HY, Wang MY, Nie XJ, Wu XL (2021) A sandwich nanocomposite composed of commercially available SnO and reduced graphene oxide as advanced anode materials for sodium-ion full batteries. Inorg Chem Front 8:396–404

    Article  CAS  Google Scholar 

  21. Liang J, Zhang L, Xili D, Kang J (2020) Rational design of hollow tubular SnO2@ TiO2 nanocomposites as anode of sodium ion batteries. Electrochim Acta 341:136030

    Article  CAS  Google Scholar 

  22. Lin YM, Abel PR, Gupta A, Goodenough JB, Heller A, Mullins CB (2013) Sn–Cu Nanocomposite Anodes for Rechargeable Sodium-Ion Batteries. ACS Appl Mater Interfaces 5:8273–8277

    Article  CAS  Google Scholar 

  23. Kim C, Lee KY, Kim I, Park J, Cho G, Kim KW, Ahn JH, Ahn HJ (2016) Long-term cycling stability of porous Sn anode for sodium-ion batteries. J Pow Sour 317:153–158

    Article  CAS  Google Scholar 

  24. Nithyadharseni P, Reddy MV, Nalini B, Ravindran TR, Pillai BC, Kalpana M, Chowdari BVR (2015) Electrochemical studies of CNT/Si–SnSb nanoparticles for lithium ion batteries. Mater Res Bull 70:478–485

    Article  CAS  Google Scholar 

  25. Shin HS, Jung KN, Jo YN, Park MS, Kim H, Lee JW (2016) Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance. Scien Reports 6:26195

    Article  CAS  Google Scholar 

  26. Pan J, Chen S, Zhang D, Xu X, Sun Y, Tian F, Gao P, Yang J (2018) SnP2O7 Covered Carbon Nanosheets as a Long‐Life and High‐Rate Anode Material for Sodium‐Ion Batteries. Adv Funct Mater 28:1804672

    Article  Google Scholar 

  27. Feng J, Xia H, Lai MO, Lu L (2009) NASICON-Structured LiGe2(PO4)3 with Improved Cyclability for High-Performance Lithium Batteries. J Phys Chem C 113:20514–20520

    Article  CAS  Google Scholar 

  28. Hu P, Ma J, Wang T, Qin B, Zhang C, Shang C, Zhao J, Cui G (2015) NASICON-Structured NaSn2(PO4)3 with Excellent High-Rate Properties as Anode Material for Lithium Ion Batteries. Chem Mater 27:6668–6674

    Article  CAS  Google Scholar 

  29. Min BS, Jang WJ, Jung KN, Kim KB, Yang JH (2020) NaTi2 (PO4) 3 nanoparticles embedded in double carbon networks as a negative electrode for an aqueous sodium-polyiodide flow battery. Electrochim Acta 361:137075

    Article  CAS  Google Scholar 

  30. Zhang X, Zeng M, She Y, Lin X, Yang D, Qin Y, Rui X (2020) Enhanced low-temperature sodium storage kinetics in a NaTi2 (PO4) 3@ C nanocomposite. J Power Sources 477:228735

    Article  CAS  Google Scholar 

  31. Ling JK, Karuppiah C, Krishnan SG, Reddy MV, Misnon II, Ab Rahim MH, Yang CC, Jose R (2021) Phosphate polyanion materials as high-voltage lithium-ion battery cathode: a review. Energy Fuels 35:10428–10450

    Article  CAS  Google Scholar 

  32. Liu B, Xing Y, Sun X, Liu X, Hou SY (2009) Microemulsion-mediated solvothermal synthesis and characterization of NaSn2 (PO4) 3 nanocubes .Mater Lett 63:2548–2551

    Article  CAS  Google Scholar 

  33. Difi S, Nassiri A, Saadoune I, Sougrati MT, Lippens PE (2018) Electrochemical Performance and Mechanisms of NaSn2(PO4)3/C Composites as Anode Materials for Li-Ion Batteries. J Phys Chem C 122:11194–11203

    Article  CAS  Google Scholar 

  34. Zhao B, Zhang X, Xu G, Hui KS, Zhu J, He W (2020) NaSn2 (PO4) 3 submicro-particles for high performance Na/Li mixed-ion battery anodes. J Alloys Compd 844:156082

    Article  CAS  Google Scholar 

  35. He W, Li C, Zhao B, Zhang X, Hui KS, Zhu J (2021) Metal Ti quantum chain-inlaid 2D NaSn2 (PO4) 3/H-doped hard carbon hybrid electrodes with ultrahigh energy storage density. Chem Eng J 403:126311

    Article  CAS  Google Scholar 

  36. Tresnasari DR, Juwono AL, Soejoko DS, Mulyaningsih NN (2019) Effects of heat treatment temperature and atmosphere on the morphology and structure of calcium phosphate. Mater Sci Eng 496:012028

    CAS  Google Scholar 

  37. Jun P, Chen S, Zhang D, Xu X, Sun Y, Tian F, Gao P, Yang J (2018) SnP2O7 Covered Carbon Nanosheets as a Long‐Life and High‐Rate Anode Material for Sodium‐Ion Batteries. Adv Funct Mater 43:1804672

    Google Scholar 

  38. Qiong W, Wang J, Wang HG, Si Z, Li C, Bai J (2021) Doped graphene encapsulated SnP2O7 with enhanced conversion reactions from polyanions as a versatile anode material for sodium dual-ion battery. Electrochim Acta 369:137657

    Article  Google Scholar 

  39. Mogensen R, Maibach J, Naylor AJ, Younesi R (2018) Capacity fading mechanism of tin phosphide anodes in sodium-ion batteries. Dalton Trans 47:10752–10758

    Article  CAS  Google Scholar 

  40. Xinzhu G, Wan Z, Wei D, Zeng X, Li Z, Jiang W, Wang H, Lin M, Li H, Liang C (2021) Dual-Carbon Confined SnP2O7 with Enhanced Pseudocapacitances for Improved Li/Na-Ion Batteries. Chem Electro Chem 14:2708–2714

    Google Scholar 

  41. Ilham B, Troujllet V, Eiedler A, Bruns M, Indris S, Ehrenberg H, Saadoune I (2017) Understanding the lithiation/delithiation process in SnP2O7 anode material for lithium-ion batteries. Electrochim Acta 252:446–452

    Article  Google Scholar 

  42. Hasanaly SM, Bustam MA (2011) Electrochemical Behavior of Mesoporous Tin Phosphate Anode upon Reaction with Lithium. J Engineering 7:15–25

    Google Scholar 

  43. Wu T, Dai G, Qin C, Cao J, Tang YF, Chen YF (2016) A novel method to synthesize SnP2O7 spherical particles for lithium-ion battery anode. Ionics 22:2315–2319

    Article  CAS  Google Scholar 

  44. Zhang L, Wang SL, Chen L, Wang Y, Su J (2018) Study on the charging and discharging characteristics of the lithium-ion battery pack. Transactions on Computer Science and Engineering 388–392

  45. Li Y, Li J (2008) Carbon-Coated Macroporous Sn2P2O7 as Anode Materials for Li-Ion Battery. J Phys Chem 112:14216–14219

    CAS  Google Scholar 

  46. Fan L, Guo X, Shen L, Yang G, Liu S, Tian N, Wang Z, Chen L (2018) Reduction Depth Dependent Structural Reversibility of Sn3(PO4)2. ACS Appl Energy Mater 1:129–133

    CAS  Google Scholar 

  47. Arvizu JA, Courel M, Sanchez MG, Gonzalez R, Jimenez D, Romero IB, Rmirez A, Galan OV (2020) Argon vs. air atmosphere in close spaced vapor transport deposited tin sulfide thin films. Sol Energy 208:227–235

    Article  Google Scholar 

  48. Palaniyandy N, Nkosi FP, Raju K, Ozoemena KI (2018) Fluorinated Mn3O4 nanospheres for lithium-ion batteries: Low-cost synthesis with enhanced capacity, cyclability and charge-transport. Mater Chem Phy 209:65–75

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (NP) is very grateful to the College of Science and Technology (CSET), University of South Africa (UNISA), Roodepoort, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nithyadharseni Palaniyandy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palaniyandy, N., Reddy, M.V. & Mamba, B.B. Unveiling the electrochemistry effect on microsphere and nanorod morphology of NaSn2(PO4)3 anode for lithium/sodium batteries. J Solid State Electrochem 27, 427–438 (2023). https://doi.org/10.1007/s10008-022-05324-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05324-6

Keywords

Navigation