Skip to main content
Log in

Electrochemical investigation of the anodic hydrogen evolution on MgZn2, Mg2Si, and Al4Cu2Mg8Si7 intermetallic phases

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic hydrogen evolution (AHE) on Mg, MgZn2 (η-phase), Al4Cu2Mg8Si7 (Q-phase), and Mg2Si (β-phase) intermetallic compounds has been investigated using hydrogen evolution technique and customized polarization schemes. Results show that at constant applied anodic current densities, the hydrogen evolution rates on pure Mg and MgZn2 are much higher than those of Q-phase and Mg2Si, indicating AHE is not very pronounced on Q-phase and Mg2Si. After anodic galvanostatic polarization, an obvious enhanced cathodic activity was observed for Mg, MgZn2, and Al4Cu2Mg8Si7 with no obvious change for Mg2Si. The stepped galvanostatic-potentiostatic tests reveal that pure Mg has the highest degree of cathodic activity enhancement with the increase of applied anodic current density, followed by Q-phase and MgZn2, while no obvious change of cathodic activity was noted in the case of Mg2Si. No single model was seen to be suitable for explaining the observed AHE of all the electrodes at the same time. However, the “incomplete film univalent Mg+ ion mechanism” and the “enhanced catalytic activity mechanism” can explain the observed experimental phenomena in many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kharitonov DS, Örnek C, Claesson PM, Sommertune J, Zharskii IM, Kurilo II, Pan J (2018) J Electrochem Soc 165:C116–C126

    Article  CAS  Google Scholar 

  2. Li H, Zhao P, Wang Z, Mao Q, Fang B, Song R, Zheng Z (2016) Corros Sci 107:113–122

    Article  CAS  Google Scholar 

  3. Birbilis N, Zhu YM, Kairy SK, Glenn MA, Nie JF, Morton AJ, Gonzalez-Garcia Y, Terryn H, Mol JMC, Hughes AE (2016) Corros Sci 113:160–171

    Article  CAS  Google Scholar 

  4. Guillaumin V, Mankowski G (2000) Corros Sci 42:105–125

    Article  CAS  Google Scholar 

  5. Jain S, Lim MLC, Hudson JL, Scully JR (2012) Corros Sci 59:136–147

    Article  CAS  Google Scholar 

  6. Ikeuba AI, Okafor PC, Ita BI, Obike AI, Abeng FE, Bamigbola AA, Essien UB (2021). Anti-corros Methods Mater. https://doi.org/10.1108/ACMM-07-2021-2518

    Article  Google Scholar 

  7. Kairy SK, Rometsch PA, Diao K, Nie JF, Davies CHJ, Birbilis N (2016) Electrochim Acta 190:92–103

    Article  CAS  Google Scholar 

  8. Ikeuba AI (2022). Appl Surface Sci Adv. https://doi.org/10.1016/j.apsadv.2022.100291

    Article  Google Scholar 

  9. Ramgopal P, Schmutz P, Frankel GS (2001) J Electrochem Soc 148:B348–B356

    Article  CAS  Google Scholar 

  10. Birbilis N, Buchheit RG (2005) J Electrochem Soc 152:B140–B151

    Article  CAS  Google Scholar 

  11. Birbilis N, Buchheit RG (2008) J Electrochem Soc 155:C117–C125

    Article  CAS  Google Scholar 

  12. Ikeuba AI, Zhang B, Wang J, Han EH, Ke W, Okafor PC (2018) J Electrochem Soc 165:C180–C194

    Article  CAS  Google Scholar 

  13. Diler E, Lescop B, Rioual S, Vien GN, Thierry D, Rouvellou B (2014) Corros Sci 79:83–88

    Article  CAS  Google Scholar 

  14. Ikeuba AI, Kou F, Duan H, Zhang B, Wang J, Han EH, Ke W (2019) J Solid State Electrochem 23:1165–1177

    Article  CAS  Google Scholar 

  15. Diler E, Rouvellou B, Rioual S, Lescop B, Vien GN, Thierry D (2014) Corros Sci 87:111–117

    Article  CAS  Google Scholar 

  16. Li LL, Zhang B, Tian B, Zhou Y, Wang JQ, Han EH, Ke W (2017) J Electrochem Soc 164:C240–C249

    Article  CAS  Google Scholar 

  17. Ikeuba AI, Zhang B, Ita BI (2020) J Electrochem Soc 167:021507

    Article  CAS  Google Scholar 

  18. Fajardo S, Frankel GS (2015) Electrochim Acta 165:255–267

    Article  CAS  Google Scholar 

  19. Fajardo S, Glover CF, Williams G, Frankel GS (2016) Electrochim Acta 212:510–521

    Article  CAS  Google Scholar 

  20. Huang H, Song GL, Atrens A, Dargusch M (2020) J of Mater Sci Tech 57:204–220

    Article  CAS  Google Scholar 

  21. Frankel GS, Samaniego A, Birbilis N (2013) Corros Sci 70:104–111

    Article  CAS  Google Scholar 

  22. Song GL, Atrens A, John D, Nairn J, Li Y (1997) Corros Sci 39:855–875

    Article  CAS  Google Scholar 

  23. Song GL, Unocic KA (2015) Corros Sci 98:758–765

    Article  CAS  Google Scholar 

  24. Birbilis N, King AD, Thomas S, Frankel GS, Scully JR (2014) Electrochim Acta 132:277–283

    Article  CAS  Google Scholar 

  25. Song GL, Atrens A, John DS, Wu X, Nairn (1997) J Corros Sci 39:1981–2004

  26. Thomas S, Medhekar NV, Frankel GS, Birbilis N (2015) Current opinion solid state mater Sci 19:85–94

    Article  CAS  Google Scholar 

  27. Williams G, Birbilis N, McMurray HN (2013) Electrochem Commun 36:1–5

    Article  CAS  Google Scholar 

  28. Fajardo S, Frankel GS (2017) Electrochem Commun 84:36–39

    Article  CAS  Google Scholar 

  29. Loffler H, Kovacs I, Lendvai J (1983) J Mater Sci 18:2215–2240

    Article  Google Scholar 

  30. Mondolfo LF (1967) The aluminum-magnesium-zinc, revere copper and brass inc., Rome, NY

  31. Ikeuba AI, Zhang B, Wang J, Han EH, Ke W (2019) Appl Surf Sci 490:535–545

    Article  CAS  Google Scholar 

  32. Ikeuba AI, Zhang B, Wang J, Han EH, Ke W (2019) J Mater Sci Technol 35:1444–1454

    Article  CAS  Google Scholar 

  33. Scendo M, Staszewska-Samson K (2017) Int J Electrochem Sc 12:5668–5691

    Article  CAS  Google Scholar 

  34. Shang XL, Zhang B, Han EH, Ke W (2011) Electrochim Acta 56:1417–1425

    Article  CAS  Google Scholar 

  35. Salleh SH, Thomas S, Yuwono JA, Venkatesan K, Birbilis N (2015) Electrochim Acta 161:144–152

    Article  CAS  Google Scholar 

  36. Taheri M, Kish JR, Birbilis N, Danaie M, McNally EA, McDermid JR (2014) Electrochim Acta 116:396–403

    Article  CAS  Google Scholar 

  37. Thomas S, Cole IS, Sridhar M, Birbilis N (2013) Electrochim Acta 97:192–201

    Article  CAS  Google Scholar 

  38. Frankel GS, Fajardo S, Lynch BM (2015) Faraday Discuss 180:11–33

    Article  CAS  Google Scholar 

  39. Esmaily MS, Fajardo JE, Birbilis N, Frankel GS, Virtanen S, Arrabal R, Thomas S, Johansson LG (2017) Progress in Mater Sci 89:92–193

    Article  CAS  Google Scholar 

  40. Petty RL, Davidson AW, Kleinberg J (1954) J Am Chem Soc 76:363–366

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51571201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•  Pure Mg, MgZn2, Al4Cu2Mg8Si7, and Mg2Si showed anodic hydrogen evolution (AHE) during anodic polarization.

•  Anodic hydrogen evolution (AHE) is more significant in Mg and MgZn2, compared to Al4Cu2Mg8Si7 and Mg2Si.

•  After prior anodic dissolution, cathodic activity is greatly enhanced for Mg, MgZn2, and Al4Cu2Mg8Si7 and not at all for Mg2Si.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeuba, A.I., Zhang, B. Electrochemical investigation of the anodic hydrogen evolution on MgZn2, Mg2Si, and Al4Cu2Mg8Si7 intermetallic phases. J Solid State Electrochem 27, 111–123 (2023). https://doi.org/10.1007/s10008-022-05310-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05310-y

Keywords

Navigation