Skip to main content
Log in

Non-precious transition metal-based counter electrodes for dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

A Correction to this article was published on 28 January 2023

This article has been updated

Abstract

A non-platinum metal catalyst, TiNx-C, was synthesized through the high-pressure pyrolysis method, which was characterized using a transmission electron microscope, surface area measurement, X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure (XAFS) studies. XPS analysis indicates the presence of Ti in 4 + oxidation state, and XAFS measurement indicates the coordination number of Ti to be 4 and the Ti-N bond length to be 2.1 Å. Ti-C was used as reference material. After fabricating dye-sensitized solar cell (DSSC), TiNx-C catalyst-based counter electrode (CE) exhibited comparable electrical performance as Pt-based counter electrode. Replacing Pt with inexpensive TiNx-C is considered an effort to lower the cost of the DSSC. In the DSSC, the TiNx-C CE showed comparable performance to Pt CE. Using TiNx-C as CE, a FF of 0.58, η of 6% JSC of 14.4 mA cm−2, and VOC of 0.73 V were obtained. The Pt CE-based DSSC exhibited a FF of 0.58, η of 7.2%, JSC of 16.0 mA cm−2, and VOC of 0.78 V.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Lee Y-L et al (2010) A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells. Electrochem Commun 12(11):1662–1665

    Article  CAS  Google Scholar 

  2. Chen L et al (2010) Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells. Electrochim Acta 55(11):3721–3726

    Article  CAS  Google Scholar 

  3. Imoto K et al (2003) High-performance carbon counter electrode for dye-sensitized solar cells. Sol Energy Mater Sol Cells 79(4):459–469

    Article  CAS  Google Scholar 

  4. Murakami TN et al (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153(12):A2255–A2261

    Article  CAS  Google Scholar 

  5. Lee WJ et al (2009) Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl Mater Interf 1(6):1145–1149

    Article  CAS  Google Scholar 

  6. Wu M et al (2011) Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. Energy Environ Sci 4(6):2308–2315

    Article  CAS  Google Scholar 

  7. Kavan L, Yum JH, Grätzel M (2010) Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5(1):165–172

    Article  Google Scholar 

  8. Saito Y et al (2004) I/I3 redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells. J Photochem Photobiol A 164(1–3):153–157

    Article  CAS  Google Scholar 

  9. Lee K-M et al (2009) A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells. J Power Sources 188(1):313–318

    Article  CAS  Google Scholar 

  10. Yan X, Zhang L (2013) Polyethylene glycol-modified poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) counter electrodes for dye-sensitized solar cell. J Appl Electrochem 43(6):605–610

    Article  CAS  Google Scholar 

  11. Wang S et al (2013) Study of H2SO4 concentration on properties of H2SO4 doped polyaniline counter electrodes for dye-sensitized solar cells. J Power Sources 242:438–446

    Article  CAS  Google Scholar 

  12. Tai Q et al (2011) In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells. ACS Nano 5(5):3795–3799

    Article  CAS  Google Scholar 

  13. Levy R, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181(4099):547–549

  14. Oyama S (1992) Preparation and catalytic properties of transition metal carbides and nitrides. Catal Today 15(2):179–200

    Article  CAS  Google Scholar 

  15. Jang JS et al (2010) Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chem Commun 46(45):8600–8602

    Article  CAS  Google Scholar 

  16. Wu M et al (2011) Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew Chem Int Ed 50(15):3520–3524

    Article  CAS  Google Scholar 

  17. Wu M et al (2012) Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. J Am Chem Soc 134(7):3419–3428

    Article  CAS  Google Scholar 

  18. Wu M et al (2011) Two flexible counter electrodes based on molybdenum and tungsten nitrides for dye-sensitized solar cells. J Mater Chem 21(29):10761–10766

    Article  CAS  Google Scholar 

  19. Jiang Q et al (2010) Surface-nitrided nickel with bifunctional structure as low-cost counter electrode for dye-sensitized solar cells. J Phys Chem C 114(31):13397–13401

    Article  CAS  Google Scholar 

  20. Li G et al (2011) Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy Environ Sci 4(5):1680–1683

    Article  CAS  Google Scholar 

  21. Wu M, Ma T (2012) Platinum-free catalysts as counter electrodes in dye-sensitized solar cells. Chemsuschem 5(8):1343–1357

    Article  CAS  Google Scholar 

  22. Guo J et al (2013) Highly efficient telluride electrocatalysts for use as Pt-free counter electrodes in dye-sensitized solar cells. Chem Commun 49(86):10157–10159

    Article  CAS  Google Scholar 

  23. Wu M et al (2012) High-performance phosphide/carbon counter electrode for both iodide and organic redox couples in dye-sensitized solar cells. J Mater Chem 22(22):11121–11127

    Article  CAS  Google Scholar 

  24. Dou Y et al (2012) Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. Phys Chem Chem Phys 14(4):1339–1342

    Article  CAS  Google Scholar 

  25. Xin X et al (2011) Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew Chem Int Ed 50(49):11739–11742

    Article  CAS  Google Scholar 

  26. Wang J, Xin X, Lin Z (2011) Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics. Nanoscale 3(8):3040–3048

    Article  CAS  Google Scholar 

  27. Zheng X et al (2013) Low-cost and high-performance CoMoS4 and NiMoS4 counter electrodes for dye-sensitized solar cells. Chem Commun 49(83):9645–9647

    Article  CAS  Google Scholar 

  28. Yuan SJ et al (2013) Enhanced performance of dye‐sensitized solar cells using solution‐based in situ synthesis and fabrication of Cu2ZnSnSe4 nanocrystal counter electrode. Chem A Eur J 19(31):10107–10110

  29. Yang J et al (2013) In situ grown vertically oriented CuInS2 nanosheets and their high catalytic activity as counter electrodes in dye-sensitized solar cells. Chem Commun 49(20):2028–2030

    Article  CAS  Google Scholar 

  30. Lin J-Y, Chou S-W (2013) Highly transparent NiCo2S4 thin film as an effective catalyst toward triiodide reduction in dye-sensitized solar cells. Electrochem Commun 37:11–14

    Article  CAS  Google Scholar 

  31. Kushwaha S et al (2017) A non-platinum counter electrode, MnNx/C, for dye-sensitized solar cell applications. Appl Surf Sci 418:179–185

    Article  CAS  Google Scholar 

  32. Kothandaraman R et al (2009) Non-precious oxygen reduction catalysts prepared by high-pressure pyrolysis for low-temperature fuel cells. Appl Catal B 92(1):209–216

    Article  CAS  Google Scholar 

  33. Nallathambi V et al (2011) Nitrogen precursor effects in iron-nitrogen-carbon oxygen reduction catalysts. Electrochem Solid-State Lett 14(6):B55–B58

    Article  CAS  Google Scholar 

  34. Karthikayini M et al (2016) Highly active and durable non-precious metal catalyst for the oxygen reduction reaction in acidic medium. J Electrochem Soc 163(6):F539–F547

    Article  CAS  Google Scholar 

  35. Palanivelu K et al (2015) Controlling the nitrogen content of metal-nitrogen-carbon based non-precious-metal electrocatalysts via selenium addition. J Electrochem Soc 162(6):F475–F482

    Article  CAS  Google Scholar 

  36. Jaouen F et al (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4(1):114–130

    Article  CAS  Google Scholar 

  37. Waychunas G et al (1993) Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochimica et Cosmochimica Acta 57(10):2251–2269

  38. Grunes L (1983) Study of the K edges of 3d transition metals in pure and oxide form by x-ray-absorption spectroscopy. Phys Rev B 27(4):2111

    Article  CAS  Google Scholar 

  39. Bair RA, Goddard WA III (1980) Ab initio studies of the X-ray absorption edge in copper complexes. I. Atomic Cu2+ and Cu(II)Cl2. Phys Rev B 22(6):2767

  40. Farges F, Brown GE, Rehr J (1997) Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment. Phys Rev B 56(4):1809

    Article  CAS  Google Scholar 

  41. Magnuson M et al (2007) Bonding mechanism in the nitrides Ti2AlN and TiN: An experimental and theoretical investigation. Phys Rev B 76(19):195127

    Article  Google Scholar 

  42. Unny D et al (2018) Effect of flexible, rigid planar and non-planar donors on the performance of dye-sensitized solar cells. J Electrochem Soc 165(13):H845–H860

    Article  CAS  Google Scholar 

  43. Kushwaha S et al (2016) A DSSC with an efficiency of ∼10%: fermi level manipulation impacting the electron transport at the photoelectrode-electrolyte interface. ChemSelect 1(19):6179–6187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support in the form of a seed grant from IOE, BHU, Varanasi to Suman Kushwaha is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suman Kushwaha or Sudip Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, S., Mandal, S. Non-precious transition metal-based counter electrodes for dye-sensitized solar cells. J Solid State Electrochem 27, 103–110 (2023). https://doi.org/10.1007/s10008-022-05301-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05301-z

Keywords

Navigation