Skip to main content

Advertisement

Log in

Mg–Al hydroxide intercalated ionic liquids for quasi-solid-state lithium batteries

  • ORIGINAL ARTICLE
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Solid -state lithium batteries are considered safer energy storage, but their payload and energy density are limited due to the large interfacial impedance caused by the poor Li+ transmission power between the solid-state electrolyte (SSE) and the electrode material. To involve the interface problem, we studied a solid-state electrolyte based on Mg–Al layered double hydroxides (LDH) intercalated ionic liquids containing lithium salt (LiIL). The characterization of LDHs and LDH-LiIL was considered by X-ray diffraction. Morphology was examined in the scanning electron microscope. This electrolyte exhibits good electrochemical performance with an ionic conductivity of the order of 10−3 at room temperature. Half-cell Li/LiFePO4 with LDH-LiIL electrolytes has a capacity above 110 mAh·g−1 at 1 C. In addition to the inherently high ionic conductivity of LDH-LiIL, the interfacial wetting effect of LiIL results in a unique interfacial contact between the electrolyte and the electrode, creating an effective Li+ conductive network throughout the cell, considered a key factor in the superior performance of solid-state lithium battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Research data policy and data availability

The data that support the finding of this study is available from the corresponding author upon reasonable request.

References

  1. Zheng Y, Wang D, Kaushik S, Zhang S, Wada T, Hwang J, Matsumoto K, Hagiwara R (2022) Ionic liquid electrolytes for next-generation electrochemical energy devices. EnergyChem 4:100075

    Article  CAS  Google Scholar 

  2. Wu H, Han H, Yan Z, Zhao Q, Chen J (2022) Chloride solid-state electrolytes for all-solid-state lithium batteries. J Solid State Electrochem 26:1791–1808

    Article  CAS  Google Scholar 

  3. Zhou G, Yu J, Liu J, Lin X, Wang Y, Law HM, Ciucci F (2022) Quasi-solid electrolytes with tailored lithium solvation for fast-charging lithium metal batteries. Cell Reports Physical Science 3:100722

    Article  CAS  Google Scholar 

  4. Kundu S, Kraytsberg A, Ein-Eli Y (2022) Recent development in the field of ceramics solid-state electrolytes: I—oxide ceramic solid-state electrolytes. J Solid State Electrochem 26:1809–1838

    Article  CAS  Google Scholar 

  5. York M, Larson K, Harris KC, Carmona E, Albertus P, Sharma R, Noked M, Strauss E, Ragones H, Golodnitsky D (2022) Recent advances in solid-state beyond lithium batteries. J Solid State Electrochem

  6. Liu Y, Xu Y (2022) Porous membrane host-derived in-situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries. Chem Eng J 433:134471

    Article  CAS  Google Scholar 

  7. Kang Q, Li Y, Zhuang Z, Wang D, Zhi C, Jiang P, Huang X (2022) Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J Energy Chem 69:194–204

    Article  CAS  Google Scholar 

  8. Li Y, Fu Z, Lu S, Sun X, Zhang X, Weng L (2022) Polymer nanofibers framework composite solid electrolyte with lithium dendrite suppression for long life all-solid-state lithium metal battery. Chem Eng J 440:135816

    Article  CAS  Google Scholar 

  9. Amici J, Torchio C, Versaci D, Dessantis D, Marchisio A, Caldera F, Bella F, Francia C, Bodoardo S (2021) Nanosponge-based composite gel polymer electrolyte for safer Li-O2 batteries. Polymers 13:1625

    Article  CAS  Google Scholar 

  10. Suriyakumar S, Gopi S, Kathiresan M, Bose S, Gowd EB, Nair JR, Angulakshmi N, Meligrana G, Bella F, Gerbaldi C, Stephan AM (2018) Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochim Acta 285:355–364

    Article  CAS  Google Scholar 

  11. Radzir NNM, Hanifah SA, Ahmad A, Hassan NH, Bella F (2015) Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate. J Solid State Electrochem 19:3079–3085

    Article  CAS  Google Scholar 

  12. Nair JR, Colò F, Kazzazi A, Moreno M, Bresser D, Lin R, Bella F, Meligrana G, Fantini S, Simonetti E, Appetecchi GB, Passerini S, Gerbaldi C (2019) Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. J Power Sources 412:398–407

    Article  CAS  Google Scholar 

  13. Wang J, Xu L, Jia G, Du J (2022) Challenges and opportunities of ionic liquid electrolytes for rechargeable batteries. Cryst Growth Des

  14. Tang X, Lv S, Jiang K, Zhou G, Liu X (2022) Recent development of ionic liquid-based electrolytes in lithium-ion batteries. J Power Sources 542:231792

    Article  CAS  Google Scholar 

  15. Nair JR, Porcarelli L, Bella F, Gerbaldi C (2015) Newly elaborated multipurpose polymer electrolyte encompassing RTILs for smart energy-efficient devices. ACS Appl Mater Interfaces 7:12961–12971

    Article  CAS  Google Scholar 

  16. Piana G, Bella F, Geobaldo F, Meligrana G, Gerbaldi C (2019) PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J Energy Storage 26:100947

    Article  Google Scholar 

  17. Tian L, Wang M, Liu Y, Su Z, Niu B, Zhang Y, Dong P, Long D (2022) Multiple ionic conduction highways and good interfacial stability of ionic liquid-encapsulated cross-linked polymer electrolytes for lithium metal batteries. J Power Sources 543:231848

    Article  CAS  Google Scholar 

  18. Bao W, Hu Z, Wang Y, Jiang J, Huo S, Fan W, Chen W, Jing X, Long X, Zhang Y (2022) Poly(ionic liquid)-functionalized graphene oxide towards ambient temperature operation of all-solid-state PEO-based polymer electrolyte lithium metal batteries. Chem Eng J 437:135420

    Article  CAS  Google Scholar 

  19. Choi W, Sung GH, Yu W-R, Kim DW (2022) Gel polymer electrolytes based on crosslinked networks by the introduction of an ionic liquid crosslinker with ethylene oxide arms. ACS Appl Energy Mater 5:8381–8390

    Article  CAS  Google Scholar 

  20. Kim H-S, Yamazaki Y, Kim J-D, Kudo T, Honma I (2010) High ionic conductivity of Mg–Al layered double hydroxides at intermediate temperature (100–200°C) under saturated humidity condition (100% RH). Solid State Ionics 181:883–888

    Article  CAS  Google Scholar 

  21. Marino O, Mascolo G (1982) Thermal stability of Mg, Al double hydroxides modified by anionic exchange. Thermochim Acta 55:377–383

    Article  CAS  Google Scholar 

  22. Pizzoferrato R, Ciotta E, Ferrari IV, Braglia M, Medaglia PG, Mattoccia A, Di Giamberardino L, Richetta M, Knauth P, Di Vona ML (2018) Ionic conductivity of ZnAl layered double hydroxide films grown on aluminum substrate. Solid State Ionics 314:30–35

    Article  CAS  Google Scholar 

  23. Furukawa Y, Tadanaga K, Hayashi A, Tatsumisago M (2011) Evaluation of ionic conductivity for Mg–Al layered double hydroxide intercalated with inorganic anions. Solid State Ionics 192:185–187

    Article  CAS  Google Scholar 

  24. Pizzoferrato R, Ciotta E, Ferrari IV, Narducci R, Pasquini L, Varone A, Richetta M, Antonaroli S, Braglia M, Knauth P, Di Vona ML (2018) Layered double hydroxides containing an ionic liquid: ionic conductivity and use in composite anion exchange membranes. ChemElectroChem 5:2781–2788

    Article  CAS  Google Scholar 

  25. Tsuneishi T, Sakamoto H, Hayashi K, Kawamura G, Muto H, Matsuda A (2014) Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery. J Asian Ceram Soc 2:165–168

    Article  Google Scholar 

  26. Pervez SA, Cambaz MA, Thangadurai V, Fichtner M (2019) Interface in solid-state lithium battery: challenges, progress, and outlook. ACS Appl Mater Interfaces 11:22029–22050

    Article  CAS  Google Scholar 

  27. Park S, Kwon D, Kang JY, Jung JC (2019) Influence of the preparation method on the catalytic activity of MgAl hydrotalcites as solid base catalysts. Green Energy Environ 4:287–292

    Article  Google Scholar 

  28. Wu G, Wang L, Yang L, Yang J (2007) Factors affecting the interlayer arrangement of transition metal–ethylenediaminetetraacetate complexes intercalated in Mg/Al layered double hydroxides. Eur J Inorg Chem 2007:799–808

    Article  Google Scholar 

  29. Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130:2730–2731

    Article  CAS  Google Scholar 

  30. Michmerhuizen A, Rose K, Annankra W, Vander GD, A. (2017) Radius ratio rule rescue. J Chem Educ 94:1480–1485

    Article  CAS  Google Scholar 

  31. Portet C, Taberna PL, Simon P, Laberty-Robert C (2004) Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications. Electrochim Acta 49:905–912

    Article  CAS  Google Scholar 

  32. Shan K, Zhai F, Yi Z-Z, Yin X-T, Dastan D, Tajabadi F, Jafari A, Abbasi S (2021) Mixed conductivity and the conduction mechanism of the orthorhombic CaZrO3 based materials. Surf Interfaces 23:100905

    Article  CAS  Google Scholar 

  33. Vol’fkovich YM, Serdyuk TM (2002) Electrochemical capacitors. Russ J Electrochem 38:935–959

    Article  CAS  Google Scholar 

  34. Haghnegahdar M, Tarighat M, Dastan D (2021) Curcumin-functionalized nanocomposite AgNPs/SDS/MWCNTs for electrocatalytic simultaneous determination of dopamine, uric acid, and guanine in co-existence of ascorbic acid by glassy carbon electrode. J Mater Sci Mater Electron 32

  35. Lewandowski A, Olejniczak A, Galinski M, Stepniak I (2010) Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J Power Sources 195:5814–5819

    Article  CAS  Google Scholar 

  36. Shan K, Yi Z-Z, Yin X-T, Dastan D, Altaf F, Garmestani H, Alamgir FM (2020) Mixed conductivity evaluation and sensing characteristics of limiting current oxygen sensors. Surf Interfaces 21:100762

    Article  CAS  Google Scholar 

  37. Hallopeau L, Bregiroux D, Rousse G, Portehault D, Stevens P, Toussaint G, Laberty-Robert C (2018) Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. J Power Sources 378:48–52

    Article  CAS  Google Scholar 

  38. Shan K, Yi Z-Z, Yin X-T, Dastan D, Garmestani H (2020) Conductivity and mixed conductivity of a novel dense diffusion barrier and the sensing properties of limiting current oxygen sensors. Dalton Trans 49:6682–6692

    Article  CAS  Google Scholar 

  39. Shan K, Yi Z-Z, Yin X-T, Dastan D, Garmestani H (2020) Y-doped CaZrO3/Co3O4 as novel dense diffusion barrier materials for a limiting current oxygen sensor. Dalton Trans 49:8549–8556

    Article  CAS  Google Scholar 

  40. Tripathi AK, Singh RK (2018) Development of ionic liquid and lithium salt immobilized MCM-41 quasi solid-liquid electrolytes for lithium batteries. Journal of Energy Storage 15:283–291

    Article  Google Scholar 

  41. Bruce PG, Evans J, Vincent CA (1988) Conductivity and transference number measurements on polymer electrolytes. Solid State Ionics 28–30:918–922

    Article  Google Scholar 

  42. Abraham KM, Jiang Z, Carroll B (1997) Highly conductive PEO-like polymer electrolytes. Chem Mater 9:1978–1988

    Article  CAS  Google Scholar 

  43. Wu F, Chen N, Chen R, Zhu Q, Qian J, Li L (2016) “Liquid-in-solid” and “solid-in-liquid” electrolytes with high rate capacity and long cycling life for lithium-ion batteries. Chem Mater 28:848–856

    Article  CAS  Google Scholar 

  44. Wang Z, Tan R, Wang H, Yang L, Hu J, Chen H, Pan F (2017) A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv Mater 30:1704436

    Article  Google Scholar 

  45. Paravannoor A, Augustine CA (2017) Interfacial properties of alloy anodes in combination with room temperature ionic liquid electrolytes: a review based on Li secondary batteries. J Electroanal Chem 805:98–109

    Article  CAS  Google Scholar 

  46. Gao Y, Yan Z, Gray JL, He X, Wang D, Chen T, Huang Q, Li YC, Wang H, Kim SH, Mallouk TE, Wang D (2019) Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat Mater

  47. Singh SK, Shalu BL, Gupta H, Singh VK, Tripathi AK, Verma YL, Singh RK (2018) Improved electrochemical performance of EMIMFSI ionic liquid based gel polymer electrolyte with temperature for rechargeable lithium battery. Energy 150:890–900

    Article  CAS  Google Scholar 

  48. Matsuo T, Gambe Y, Sun Y, Honma I (2014) Bipolar stacked quasi-all-solid-state lithium secondary batteries with output cell potentials of over 6 V. Sci Rep 4:6084–6084

    Article  CAS  Google Scholar 

  49. Rosso M, Brissot C, Teyssot A, Dollé M, Sannier L, Tarascon J-M, Bouchet R, Lascaud S (2006) Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta 51:5334–5340

    Article  CAS  Google Scholar 

  50. Xie L, Ren D, Wang L, Chen Z, Tian G, Amine K, He X (2020) A facile approach to high precision detection of cell-to-cell variation for li-ion batteries. Sci Rep 10:7182

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by entrepreneurial Program of Foshan National Hi-tech Industrial Development Zone.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihui Ding or HeMing He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 254 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Ding, Z. & He, H. Mg–Al hydroxide intercalated ionic liquids for quasi-solid-state lithium batteries. J Solid State Electrochem 27, 161–170 (2023). https://doi.org/10.1007/s10008-022-05299-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05299-4

Keywords

Navigation