Skip to main content
Log in

Influence of ZIF-8 modification on performance of ZnO-based dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) were used to modify the surface of nanoparticulate ZnO electrodes, aiming at enhancing the performance of dye-sensitized solar cells (DSSCs). Zeolitic imidazolate framework-8 (ZIF-8) consisting of Zn2+ ions and 2-methylimidazolates was chosen and their concentrations in precursor solutions were set as experimental conditions for the MOF-modification. A thin ZIF-8 layer with a thickness of 3 nm could be formed on the ZnO surface by immersing the ZnO film in a high-concentration precursor solution at room temperature, as confirmed by field-emission transmission electron microscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. However, both short-circuit photocurrent density (JSC) and open-circuit photovoltage of the cell using the above ZIF-8-modified electrode were decreased probably because of the inhibition of the electron injection from photoexcited dyes. In contrast, the immersion of the ZnO film in a low-concentration precursor solution was found to be effective in enhancing JSC, which was explained by the improved charge transfer through the surface passivation of the ZnO electrode. Another positive effect was the improved durability observed in the cell using the modified electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye-sensitized solar cells: a brief overview. Sol Energy 85(6):1172–1178. https://doi.org/10.1016/j.solener.2011.01.018

    Article  CAS  Google Scholar 

  2. Jose R, Thavasi V, Ramakrishna S (2009) Metal oxides for dye-sensitized solar cells. J Am Ceram Soc 92(2):289–301. https://doi.org/10.1111/j.1551-2916.2008.02870.x

    Article  CAS  Google Scholar 

  3. Yeoh ME, Chan KY (2017) Recent advances in photo-anode for dye-sensitized solar cells: a review. Int J Energy Res 41(15):2446–2467. https://doi.org/10.1002/er.3764

    Article  Google Scholar 

  4. Babar F, Mehmood U, Asghar H, Medhi MH, Khan AUH, Khalid H, Huda NU, Fatima Z (2020) Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: a comprehensive review. Renew Sustain Energy Rev 129:109919. https://doi.org/10.1016/j.rser.2020.109919

    Article  CAS  Google Scholar 

  5. Zhang L, Cole J (2015) Anchoring groups for dye-sensitized solar cells. ACS Appl Mater Interfaces 7(6):3427–3455. https://doi.org/10.1021/am507334m

    Article  CAS  Google Scholar 

  6. Cole JM, Pepe G, Bahri OKA, Cooper CB (2019) Cosensitization in dye-sensitized solar cells. Chem Rev 119(12):7279–7327. https://doi.org/10.1021/acs.chemrev.8b00632

    Article  CAS  Google Scholar 

  7. Mujtahid F, Gareso PL, Armynah B, Tahir D (2022) Review effect of various types of dyes and structures in supporting performance of dye-sensitized solar cell TiO2-based nanocomposites. Int J Energy Res 46(2):726–742. https://doi.org/10.1002/er.7310

    Article  CAS  Google Scholar 

  8. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115(5):2136–2173. https://doi.org/10.1021/cr400675m

    Article  CAS  Google Scholar 

  9. Iftikhar H, Sonai GG, Hashmi SG, Nogueira AF, Lund PD (2019) Progress on electrolytes development in dye-sensitized solar cells. Materials 12(12):1–68. https://doi.org/10.3390/ma12121998

    Article  CAS  Google Scholar 

  10. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G, Lin Y, Xie Y, Wei Y (2017) Counter electrodes in dye-sensitized solar cells. Chem Soc Rev 46(19):5975–6023. https://doi.org/10.1039/C6CS00752J

    Article  CAS  Google Scholar 

  11. Wang X, Zhao B, Kan W, Xie Y, Pan K (2022) Review on low-cost counter electrode materials for dye-sensitized solar cells: effective strategy to improve photovoltaic performance. Adv Mater Interfaces 9(2):2101229. https://doi.org/10.1002/admi.202101229

    Article  CAS  Google Scholar 

  12. Zhang D, Stojanovic M, Ren Y, Cao Y, Eickemeyer FT, Socie E, Vlachopoulos N, Moser JE, Zakeeruddin SM, Hagfeldt A, Grätzel M (2021) A molecular photosensitizer achieves a VOC of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte. Nat Commun 12(1777):1–10. https://doi.org/10.1038/s41467-021-21945-3

  13. Hosono E, Fujihara S, Kimura T (2004) Synthesis, structure and photoelectrochemical performance of micro/nano-textured ZnO/eosin Y electrodes. Electrochim Acta 49(14):2287–2293. https://doi.org/10.1016/j.electacta.2004.01.009

    Article  CAS  Google Scholar 

  14. Kakiuchi K, Hosono E, Fujihara S (2006) Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719. J Photochem Photobiol A 179(1–2):81–86. https://doi.org/10.1016/j.jphotochem.2005.07.018

    Article  CAS  Google Scholar 

  15. Saito M, Fujihara S (2008) Large photocurrent generation in dye-sensitized ZnO solar cells. Energy Environ Sci 1(2):280–283. https://doi.org/10.1039/b806096g

    Article  CAS  Google Scholar 

  16. Ueno S, Fujihara S (2011) Controlled synthesis of nanostructured ZnO films for use in dye-sensitized solar cells. J Electrochem Soc 158(1):K1–K5. https://doi.org/10.1149/1.3509161

    Article  CAS  Google Scholar 

  17. Ohashi H, Hagiwara M, Fujihara S (2017) Solvent-assisted microstructural evolution and enhanced performance of porous ZnO films for plastic dye-sensitized solar cells. J Power Sources 342:148–156. https://doi.org/10.1016/j.jpowsour.2016.12.049

    Article  CAS  Google Scholar 

  18. Tanaka E, Nurdiwijayanto L, Hagiwara M, Fujihara S (2018) Structural improvement of ZnO electrodes through solution-processed routes for enhancing open-circuit voltage in dye-sensitized solar cells. J Solid State Electrochem 22:3119–3127. https://doi.org/10.1007/s10008-018-4024-x

    Article  CAS  Google Scholar 

  19. Shoji T, Hagiwara M, Fujihara S (2021) Comparative hydrothermal synthesis of CeO2 crystals for use in light-scattering layers of dye-sensitized solar cells. Cryst Eng Comm 23(6):1415–1422. https://doi.org/10.1039/D0CE01503B

    Article  CAS  Google Scholar 

  20. Look DC, Reynolds DC, Sizelove JR, Jones RL, Litton CW, Cantwell G, Harsch WC (1998) Electrical properties of bulk ZnO. Solid State Commun 105(6):399–401. https://doi.org/10.1016/S0038-1098(97)10145-4

    Article  CAS  Google Scholar 

  21. Němec H, Rochford J, Taratula O, Galoppini E, Kužel P, Polívka T, Yartsev A, Sundström V (2010) Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: a study using ultrafast terahertz spectroscopy. Phys Rev Lett 104(19):197401. https://doi.org/10.1103/PhysRevLett.104.197401

    Article  CAS  Google Scholar 

  22. Tiwana P, Docampo P, Johnston MB, Snaith HJ, Herz LM (2011) Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano 5(6):5158–5166. https://doi.org/10.1021/nn201243y

    Article  CAS  Google Scholar 

  23. Ueno S, Fujihara S (2010) Formation of silica nanolayers on ZnO electrodes in dye-sensitized solar cells. Eur J Inorg Chem 14:2165–2171. https://doi.org/10.1002/ejic.200901205

    Article  CAS  Google Scholar 

  24. Ueno S, Fujihara S (2011) Effect of an Nb2O5 nanolayer coating on ZnO electrodes in dye-sensitized solar cells. Electrochim Acta 56(7):2906–2913. https://doi.org/10.1016/j.electacta.2010.12.084

    Article  CAS  Google Scholar 

  25. Law M, Greene LE, Radenovic A, Kuykendall T, Liphardt J, Yang P (2006) ZnO–Al2O3 and ZnO–TiO2 core–shell nanowire dye-sensitized solar cells. J Phys Chem B 110(45):22652–22663. https://doi.org/10.1021/jp0648644

    Article  CAS  Google Scholar 

  26. Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Room temperature synthesis of metal–organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64(36):8553–8557. https://doi.org/10.1016/j.tet.2008.06.036

    Article  CAS  Google Scholar 

  27. Lu G, Hupp JT (2010) Metal–organic frameworks as sensors: a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases. J Am Chem Soc 132(23):7832–7833. https://doi.org/10.1021/ja101415b

    Article  CAS  Google Scholar 

  28. Wang X, Liu J, Leong S, Lin X, Wei J, Kong B, Xu Y, Low ZX, Yao J, Wang H (2016) Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Appl Mater Interfaces 8(14):9080–9087. https://doi.org/10.1021/acsami.6b00028

    Article  CAS  Google Scholar 

  29. Enomoto T, Ueno S, Hosono E, Hagiwara M, Fujihara S (2017) Size-controlled synthesis of ZIF-8 particles and their pyrolytic conversion into ZnO aggregates as photoanode materials of dye-sensitized solar cells. Cryst Eng Comm 19(21):2844–2851. https://doi.org/10.1039/C7CE00415J

    Article  CAS  Google Scholar 

  30. Li Y, Pang A, Wang C, Wei M (2011) Metal–organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells. J Mater Chem 21(43):17259–17264. https://doi.org/10.1039/C1JM12754C

    Article  CAS  Google Scholar 

  31. Li Y, Chen C, Sun X, Dou J, Wei M (2014) Metal–organic framework at interfaces in dye-sensitized solar cells. Chemsuschem 7(9):2469–2472. https://doi.org/10.1002/cssc.201402143

    Article  CAS  Google Scholar 

  32. Gu A, Xiang W, Wang T, Gu S, Zhao X (2017) Enhance photovoltaic performance of tris(2,2’-bipyridine) cobalt(II)/(III) based dye-sensitized solar cells via modifying TiO2 surface with metal–organic frameworks. Sol Energy 147:126–132. https://doi.org/10.1016/j.solener.2017.03.045

    Article  CAS  Google Scholar 

  33. Hou C, Xu Q, Peng J, Ji Z, Hu X (2013) (110)-oriented ZIF-8 thin films on ITO with controllable thickness. Chem Phys Chem 14(1):140–144. https://doi.org/10.1002/cphc.201200677

    Article  CAS  Google Scholar 

  34. Lee G, Lee M, Jeong Y, Jang E, Baik H, Jung JC, Choi J (2022) Synthetic origin-dependent catalytic activity of metal–organic frameworks: unprecedented demonstration with ZIF-8 s on CO2 cycloaddition reaction. Chem Eng J 435(2):134964. https://doi.org/10.1016/j.cej.2022.134964

    Article  CAS  Google Scholar 

  35. Babu KS, Reddy AR, Sujatha C, Reddy KV, Mallika AN (2013) Synthesis and optical characterization of porous ZnO. J Adv Ceram 2(3):260–265. https://doi.org/10.1007/s40145-013-0069-6

    Article  CAS  Google Scholar 

  36. Navas D, Ibañez A, González I, Palma JL, Dreyse P (2020) Controlled dispersion of ZnO nanoparticles produced by basic precipitation in solvothermal processes. Heliyon 6(12):e05821. https://doi.org/10.1016/j.heliyon.2020.e05821

    Article  Google Scholar 

  37. Aksoy S, Gorgun K, Caglar Y, Caglar M (2019) Effect of loading and standbye time of the organic dye N719 on the photovoltaic performance of ZnO based DSSC. J Mol Struct 1189:181–186. https://doi.org/10.1016/j.molstruc.2019.04.040

    Article  CAS  Google Scholar 

  38. Butler KT, Hendon CH, Walsh A (2014) Electronic chemical potentials of porous metal–organic frameworks. J Am Chem Soc 136(7):2703–2706. https://doi.org/10.1021/ja4110073

    Article  CAS  Google Scholar 

  39. Chin M, Cisneros C, Araiza SM, Vargas KM, Ishihara KM, Tian F (2018) Rhodamine B degradation by nanosized zeolitic imidazolate framework-8 (ZIF-8). RSC Adv 8(47):26987–26997. https://doi.org/10.1039/c8ra03459a

    Article  CAS  Google Scholar 

  40. Ding Y, Zhou L, Mo L, Jiang L, Hu L, Li Z, Chen S, Dai S (2015) TiO2 microspheres with controllable surface area and porosity for enhanced light harvesting and electrolyte diffusion in dye-sensitized solar cells. Adv Funct Mater 25(37):5946–5953. https://doi.org/10.1002/adfm.201502224

    Article  CAS  Google Scholar 

  41. Prabakaran K, Mohanty S, Nayak SK (2015) Improved electrochemical and photovoltaic performance of dye sensitized solar cells based on PEO/PVDF–HFP/silane modified TiO2 electrolytes and MWCNT/Nafion® counter electrode. RSC Adv 5(51):40491–40504. https://doi.org/10.1039/c5ra01770j

    Article  CAS  Google Scholar 

  42. Listorti A, O’regan B, Durrant JR (2011) Electron transfer dynamics in dye-sensitized solar cells. Chem Mater 23(15):3381–3399. https://doi.org/10.1021/cm200651e

    Article  CAS  Google Scholar 

  43. Wang Q, Moser JE, Grätzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109(31):14945–14953. https://doi.org/10.1021/jp052768h

    Article  CAS  Google Scholar 

  44. Chandiran AK, Tetreault N, Humphry-Baker R, Kessler F, Baranoff E, Yi C, Nazeeruddin MK, Grätzel M (2012) Subnanometer Ga2O3 tunneling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells. Nano Lett 12(8):3941–3947. https://doi.org/10.1021/nl301023r

  45. Wu S, Han H, Tai Q, Zhang J, Xu S, Zhou C, Yang Y, Hu H, Chen B, Sebo B, Zhao XZ (2008) Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering. Nanotechnol 19:215704. https://doi.org/10.1088/0957-4484/19/21/215704

    Article  CAS  Google Scholar 

  46. Ganapathy V, Karunagaran B, Rhee SW (2010) Improved performance of dye-sensitized solar cells with TiO2/alumina core–shell formation using atomic layer deposition. J Power Sources 195(15):5138–5143. https://doi.org/10.1016/j.jpowsour.2010.01.085

    Article  CAS  Google Scholar 

  47. Choi J, Kim Y, Jo JW, Kim J, Sun B, Walters G, Arquer FPG, Quintero-Bermudez R, Li Y, Tan CS, Quan LN, Kam APT, Hoogland S, Lu Z, Voznyy O, Sargent EH (2017) Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics. Adv Mater 29(33):1702350. https://doi.org/10.1002/adma.201702350

    Article  CAS  Google Scholar 

  48. Liu C, Zhang D, Li Z, Han W, Ren G, Li Z, Shen L, Guo W, Zheng W (2020) Incorporating a polar molecule to passivate defects for perovskite solar cells. Sol RRL 4(3):1900489. https://doi.org/10.1002/solr.201900489

    Article  CAS  Google Scholar 

  49. Sarker S, Saleh Ahammad AJ, Seo HW, Kim DM (2014) Electrochemical impedance spectra of dye-sensitized solar cells: fundamentals and spreadsheet calculation. Int J Photoenergy 2014:851705. https://doi.org/10.1155/2014/851705

    Article  CAS  Google Scholar 

  50. Lan JL, Wei TC, Feng SP, Wan CC, Cao G (2012) Effects of iodine content in the electrolyte on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities. J Phys Chem C 116(49):25727–25733. https://doi.org/10.1021/jp309872n

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (M. S.) thanks the Kato Foundation for Promotion of Science for its financial support towards this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinobu Fujihara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugihara, M., Hagiwara, M. & Fujihara, S. Influence of ZIF-8 modification on performance of ZnO-based dye-sensitized solar cells. J Solid State Electrochem 27, 75–83 (2023). https://doi.org/10.1007/s10008-022-05297-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05297-6

Keywords

Navigation