Skip to main content

Electrochemical behavior of methylene blue at bare and DNA-modified silver solid amalgam electrodes

Abstract

Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used for a voltammetric study of methylene blue (MB) at a mercury meniscus-modified silver solid amalgam electrode (m-AgSAE). Electrochemical impedance spectroscopy (EIS) was used for the verification and comparison of results. DPV offered sensitive detection of MB (in 0.1 mol L−1 phosphate buffer of pH 7.0) at both a bare and a DNA-modified silver amalgam electrode. MB gives a specific cathodic signal related to the reduction of this redox intercalator. This signal is significantly higher at the DNA-modified than at the unmodified silver amalgam electrode, which is in correspondence with the changes in charge transfer resistance values obtained from Nyquist plots. The concentration of double-stranded DNA (dsDNA) to form a layer (0.1 mg mL−1), the time of the dsDNA spontaneous immobilization on the surface of the electrode (1 min), the concentration of MB (1 × 10−5 mol L−1), and the time of the accumulation of MB into the dsDNA layer (1 min) were optimized for further biosensor development and applications.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Papeschi G, Costa M, Bordi S (1981) Electrochemical behavior of methylene blue and its leucoform at the mercury electrode. Electrochem Sci Technol 128:1518–1521. https://doi.org/10.1149/1.2127673

    CAS  Article  Google Scholar 

  2. Brdička R (1942) Über die Adsorption des reduzierten Methylenblaus and der tropfenden Quecksilberelektrode. Z Elektrochem 48:278–288

    Google Scholar 

  3. Barou E, Bouvet M, Heintz O, Meunier-Prest R (2012) Electrochemistry of methylene blue at an alkanethiol modified electrode. Electrochim Acta 75:387–392. https://doi.org/10.1016/j.electacta.2012.05.017

    CAS  Article  Google Scholar 

  4. Hua H, Liu Y, Guan X, Li Y (2018) DNA nanosensors based on the use of single gold nanowire electrodes and methylene blue as an intercalator. Microchim Acta 185:152. https://doi.org/10.1007/s00604-018-2703-z

    CAS  Article  Google Scholar 

  5. Gorodetsky AA, Buzzeo MC, Barton JK (2009) DNA-mediated electrochemistry. Bioconjug Chem 19:2285–2296. https://doi.org/10.1021/bc8003149

    CAS  Article  Google Scholar 

  6. Paleček E, Bartošík M (2012) Electrochemistry of nucleic acids. Chem Rev 112:3427–3481. https://doi.org/10.1021/cr200303p

    CAS  Article  PubMed  Google Scholar 

  7. Kelley SO, Barton JK, Jackson NM, Hill MG (1997) Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjug Chem 8:31–37. https://doi.org/10.1021/bc960070o

    CAS  Article  PubMed  Google Scholar 

  8. Yau HCM, Chan HL, Yang M (2003) Electrochemical properties of DNA-intercalating doxorubicin and methylene blue on n-hexadecyl mercaptan-doped 5′-thiol-labeled DNA-modified gold electrodes. Biosens Bioelectron 18:873–879. https://doi.org/10.1016/S0956-5663(02)00161-6

    CAS  Article  PubMed  Google Scholar 

  9. Vardevanyan PO, Antonyan AP, Parsadanyan MA et al (2013) Mechanisms for binding between methylene blue and DNA. J Appl Spectrosc 80:595–599. https://doi.org/10.1007/s10812-013-9811-7

    CAS  Article  Google Scholar 

  10. Boon EM, Jackson NM, Wightman MD et al (2003) Intercalative stacking: a critical feature of DNA charge-transport electrochemistry. J Phys Chem B 107:11805–11812. https://doi.org/10.1021/jp030753i

    CAS  Article  Google Scholar 

  11. Rohs R, Sklenar H (2004) Methylene blue binding to DNA with alternating at base sequence: minor groove binding is favored over intercalation. J Biomol Struct Dyn 21:699–711. https://doi.org/10.1080/07391102.2004.10506960

    CAS  Article  PubMed  Google Scholar 

  12. Nejdl L, Kynicky J, Brtnicky M et al (2017) Amalgam electrode-based electrochemical detector for on-site direct determination of cadmium(II) and lead(II) from soils. Sensors 17:1835–1847. https://doi.org/10.3390/s17081835

    CAS  Article  PubMed Central  Google Scholar 

  13. Fischer J, Hajkova A, Pereira M et al (2016) Investigation of voltammetric behaviour of insecticide chlorpyrifos on a mercury meniscus modified silver solid amalgam electrode. Electrochim Acta 216:510–516. https://doi.org/10.1016/j.electacta.2016.09.013

    CAS  Article  Google Scholar 

  14. Novakova K, Hrdlicka V, Navratil T et al (2016) Application of silver solid amalgam electrode for determination of formamidine amitraz. Monatsh Chem 147:181–189. https://doi.org/10.1007/s00706-015-1575-8

    CAS  Article  Google Scholar 

  15. Nováková K, Hrdlička V, Navrátil T et al (2015) Determination of 5-nitroindazole using silver solid amalgam electrode. Monatsh Chem 146:761–769. https://doi.org/10.1007/s00706-014-1346-y

    CAS  Article  Google Scholar 

  16. Bandžuchová L, Šelešovská R, Navrátil T, Chýlková J (2013) Silver solid amalgam electrode as a tool for monitoring the electrochemical reduction of hydroxocobalamin. Electroanalysis 25:213–222. https://doi.org/10.1002/elan.201200365

    CAS  Article  Google Scholar 

  17. Mikkelsen O, Schroder KH (2003) Amalgam electrodes for electroanalysis. Electroanalysis 15:679–687. https://doi.org/10.1002/elan.200390085

    CAS  Article  Google Scholar 

  18. Yosypchuk B, Fojta M, Barek J (2010) Amalgam electrodes as tool for study of environmental important compounds and for detection of DNA damages. Int Conf Dev Energy Environ Econ Proc 146–150

  19. Yosypchuk B, Novotný L (2002) Electrodes of nontoxic solid amalgams for electrochemical measurements. Electroanalysis 14:1733–1738. https://doi.org/10.1002/elan.200290018

    CAS  Article  Google Scholar 

  20. Yosypchuk B, Barek J (2009) Analytical applications of solid and paste amalgam eectrodes. Crit Rev Anal Chem 39:189–203. https://doi.org/10.1080/10408340903011838

    CAS  Article  Google Scholar 

  21. Vyskočil V, Daňhel A, Fischer J et al (2010) Silver amalgam electrodes — a look back at the last five years of their development and applications. Sens Electroanal 5:13–31

    Google Scholar 

  22. Lucca BG, Petroni JM, Ferreira VS (2018) Electrochemical study and voltammetric determination of sodium diethyldithiocarbamate using silver nanoparticles solid amalgam electrode. Int J Environ Anal Chem 99:397–408. https://doi.org/10.1080/03067319.2018.1510918

    CAS  Article  Google Scholar 

  23. Barek J, Fischer J, Moreira JC, Wang J (2014) Voltammetric and amperometric determination of biologically active organic compounds using various types of silver amalgam electrodes. Sens Electroanal 8:35–47

    Google Scholar 

  24. Bobrowski A, Królicka A, Bobrowski R (2016) Renewable silver amalgam film electrodes in electrochemical stripping analysis — a review. J Solid State Electrochem 20:3217–3228. https://doi.org/10.1007/s10008-016-3275-7

    CAS  Article  Google Scholar 

  25. Jusková P, Ostatná V, Paleček E, Foret F (2010) Fabrication and characterization of solid mercury. Anal Chem 82:2690–2695. https://doi.org/10.1021/ac902333s

    CAS  Article  PubMed  Google Scholar 

  26. Kuchariková K, Novotny L, Yosypchuk B, Fojta M (2004) Detecting DNA damage with a silver solid amalgam electrode. Electroanalysis 16:410–414. https://doi.org/10.1002/elan.200302874

    CAS  Article  Google Scholar 

  27. Hasoň S, Dvorák J, Jelen F, Vetterl V (2002) Impedance analysis of DNA and DNA-drug interactions on thin mercury film electrodes. Crit Rev Anal Chem 32:167–179. https://doi.org/10.1080/10408340290765515

    Article  Google Scholar 

  28. Krejcova Z, Barek J, Vyskocil V (2016) Voltammetric determination of fenitrothion and study of its interaction with DNA at a mercury meniscus modified silver solid amalgam electrode. Monatsh Chem 147:135–142. https://doi.org/10.1007/s00706-015-1595-4

    CAS  Article  Google Scholar 

  29. Fadrná R, Yosypchuk B, Fojta M et al (2004) Voltammetric determination of adenine, guanine, and DNA using liquid mercury free polished silver solid amalgam electrode. Anal Lett 37:399–413. https://doi.org/10.1081/Al-120028615

  30. Fadrná R, Cahová-Kucharíková K, Havran L et al (2005) Use of polished and mercury film-modified silver solid amalgam electrodes in electrochemical analysis of DNA. Electroanalysis 17:452–459. https://doi.org/10.1002/elan.200403181

    CAS  Article  Google Scholar 

  31. Svitková V, Nemčeková K, Vyskočil V (2022) Application of silver solid amalgam electrodes in electrochemical detection of DNA damage. Anal Bioanal Chem 414:5435–5444. https://doi.org/10.1007/s00216-022-03917-8

    CAS  Article  PubMed  Google Scholar 

  32. Aruji Nicolai SH, Rodrigues PRP, Agostinho SML, Rubim JC (2002) Electrochemical and spectroelectrochemical (SERS) studies of the reduction of methylene blue on a silver electrode. J Electroanal Chem 527:103–111. https://doi.org/10.1016/S0022-0728(02)00832-X

    Article  Google Scholar 

  33. Wopschall RH, Shain I (1967) Adsorption characteristics of the methylene blue system using stationary electrode polarography. Anal Chem 39:1527–1534. https://doi.org/10.1021/ac50156a019

    CAS  Article  Google Scholar 

  34. Silva FB, Vieira SN, Goulart Filho LR, Boodts JFC, Brito-Madurro AG, Madurro JM (2008) Electrochemical investigation of oligonucleotide-DNA hybridization on poly(4-methoxyphenethylamine). Int J Mol Sci 9:1173–1188. https://doi.org/10.3390/ijms9071173

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Piccardi G, Pergola F, Foresti ML, Guidelli R (1977) A detailed analysis of the polarographic behaviour of methylene blue in phosphate buffer on mercury. J Electroanal Chem 84:235–253. https://doi.org/10.1016/S0022-0728(77)80375-6

    CAS  Article  Google Scholar 

  36. Komura T, Niu GY, Yamaguchi T, Asano M, Matsuda A (2004) Coupled electron-proton transport in electropolymerized methylene blue and the influence of its protonation level on the rate of electron exchange with β-nicotinamide adenine dinucleotide. Electroanalysis 16:1791–1800. https://doi.org/10.1002/elan.200303029

    CAS  Article  Google Scholar 

  37. Vyskočil V, Blašková M, Hájková A et al (2012) Electrochemical DNA biosensors — useful diagnostic tools for the detection of damage to DNA caused by organic xenobiotics (a review). Sens Electroanal 7:141–162

    Google Scholar 

  38. Zhu L, Zhao R, Wang K et al (2008) Electrochemical behaviors of methylene blue on DNA modified electrode and its application to the detection of PCR product from NOS sequence. Sensors 8:5649–5660. https://doi.org/10.3390/s8095649

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Li C, Chen X, Wang N, Zhang B (2017) An ultrasensitive and label-free electrochemical DNA biosensor for detection of DNase I activity. RSC Adv 7:21666–21670. https://doi.org/10.1039/c7ra01995e

    CAS  Article  Google Scholar 

  40. Gu T, Hasebe Y (2004) Peroxidase and methylene blue-incorporated double stranded DNA–polyamine complex membrane for electrochemical sensing of hydrogen peroxide. Anal Chim Acta 525:191–198. https://doi.org/10.1016/j.aca.2004.07.070

    CAS  Article  Google Scholar 

  41. Gebala M, Stoica L, Neugebauer S, Schuhmann W (2009) Label-free detection of DNA hybridization in presence of intercalators using electrochemical impedance spectroscopy. Electroanalysis 21:325–331. https://doi.org/10.1002/elan.200804388

    CAS  Article  Google Scholar 

  42. Cesiulis H, Tsyntsaru N, Ramnavicius A, Ragoisha G (2016) The study of thin films by electrochemical impedance spectroscopy. In: Tiginyanu I, Topala P, Ursaki V (eds) Nanostructured and thin films for multifunctional applications. Springer, Switzerland, pp 3–42

    Chapter  Google Scholar 

  43. Al-Qasmi N, Hameed A, Khan AN et al (2018) Mercury meniscus on solid silver amalgam electrode as a sensitive electrochemical sensor for tetrachlorvinphos. J Saudi Chem Soc 22:496–507. https://doi.org/10.1016/j.jscs.2016.07.005

    CAS  Article  Google Scholar 

  44. Arias P, Ferreyra NF, Rivas GA, Bollo S (2009) Glassy carbon electrodes modified with CNT dispersed in chitosan: analytical applications for sensing DNA–methylene blue interaction. J Electroanal Chem 634:123–126. https://doi.org/10.1016/j.jelechem.2009.07.022

    CAS  Article  Google Scholar 

  45. Fojta M, Daňhel A, Havran L, Vyskočil V (2016) Recent progress in electrochemical sensors and assays for DNA damage and repair. TrAC - Trends Anal Chem 79:160–167. https://doi.org/10.1016/j.trac.2015.11.018

    CAS  Article  Google Scholar 

Download references

Acknowledgements

VS thanks the Scientific Grant Agency VEGA of the Slovak Republic (Project No. 1/0159/20) and VV thanks the Czech Science Foundation (Project GACR No. 20-01589S) for the financial support of this research. VS, moreover, thanks the Erasmus+ Program of the Slovak Republic for supporting her research stay at the Charles University in Prague. Technical, material, and intellectual support from Metrohm Czech Republic is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlastimil Vyskočil.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Svitková, V., Vyskočil, V. Electrochemical behavior of methylene blue at bare and DNA-modified silver solid amalgam electrodes. J Solid State Electrochem 26, 2491–2499 (2022). https://doi.org/10.1007/s10008-022-05270-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05270-3

Keywords

  • Silver amalgam electrode
  • Methylene blue
  • DNA
  • Electrochemistry