Skip to main content
Log in

NiS/Cu7S4 composites as high-performance supercapacitor electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, we report the synthesis of mixed metal sulfide NiS/Cu7S4-DT in a hydrothermal system assisted by triethanolamine (TEOA) and dimethyl sulfoxide (DMSO), and found that TEOA and DMSO can not only reduce material agglomeration, but also make the particle size of the material smaller and the specific surface area larger. More importantly, when used as the positive electrode of supercapacitor, the NiS/Cu7S4-DT electrode material shows a high specific capacitance (1674 F g−1 at 1 A g−1) and excellent cycle stability, with only about 10% loss over 10,000 cycles at 5 A g−1. In addition, the assembled asymmetric supercapacitor NiS/Cu7S4//AC has a high specific capacitance (157 F g−1 at 1 A g−1) and good cycle stability (after 20,000 cycles, the capacity can still maintain 72% of the initial value). When the power density is 374 W kg−1, the energy density can reach 50 Wh kg−1. The excellent electrochemical performance is mainly derived from the prepared mixed sulfide NiS/Cu7S4-DT unique nanostructure that can accelerate the rapid diffusion of ions and electrons, which is beneficial to the electrode/electrolyte contact area, thereby increasing the charge transfer rate. This method is expected to be extended to other related fields and play a certain guiding role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu Q, Qiu M, Zhao M, Li Z, Li YZ (2019) Modification of NFA-conjugated bridges with symmetric structures for high-efficiency non-fullerene PSCs. Polymers 11(6):958

    Article  CAS  Google Scholar 

  2. He Q, Zhu D, Wu X, Dong D, Xu M, Tong ZF (2019) Hydrogen desorption properties of LiBH4/xLiAlH4 (x=0.5, 1, 2) composites. Molecules 24(10):1861

  3. Gao YP, Huang KJ (2017) NiCo2S4 materials for supercapacitor applications. Chem Asian J 12(16):1969–1984

    Article  CAS  Google Scholar 

  4. Guan M, Wang Q, Zhang X, Bao J, Gong XZ, Liu YW (2020) Two-dimensional transition metal oxide and hydroxide-based hierarchical architectures for advanced supercapacitor materials. Front Chem 8:390

    Article  CAS  Google Scholar 

  5. Zhang L, Shi D, Liu T, Jaroniec M, Yu JG (2019) Nickel-based materials for supercapacitors Mater Today 25:35–65

    CAS  Google Scholar 

  6. Arulraj A, Ilayaraja N, Rajeshkumar V, Ramesh M (2019) Direct synthesis of cubic shaped Ag2S on Ni mesh as binder-free electrodes for energy storage applications. Sci Rep 9(1):1–8

    Article  CAS  Google Scholar 

  7. Guo J, Zhang X, Sun Y, Zhang XH, Tang L, Zhang X (2017) Double-shell CuS nanocages as advanced supercapacitor electrode materials. J Power Sources 355:31–35

    Article  CAS  Google Scholar 

  8. Vattikuti SVP, Police AKR, Shim J, Byon C (2018) Sacrificial-template-free synthesis of core-shell C@Bi2S3 heterostructures for efficient supercapacitor and H2 production applications. Sci Rep 8(1):1–16

    Article  CAS  Google Scholar 

  9. Nandhini S, Muralidharan G (2018) Facile microwave-hydrothermal synthesis of NiS nanostructures for supercapacitor applications. Appl Sur Sci 449:485–491

    Article  CAS  Google Scholar 

  10. Ma X, Zhang L, Xu G, Zhang CY, Song HJ, He YT, Zhang C, Jia DZ (2017) Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high performance supercapacitors. Chem Eng J 320:22–28

    Article  CAS  Google Scholar 

  11. Harish S, Naveen AN, Abinaya R, Archana J, Ramesh R, Navaneethan M, Shimomura M, Hayakawa Y (2018) Enhanced performance on capacity retention of hierarchical NiS hexagonal nanoplate for highly stable asymmetric supercapacitor. Electrochim Acta 283:1053–1062

  12. Li X, Shen J, Li N, Ye MX (2015) Template-free solvothermal synthesis of NiS2 microspheres on graphene sheets for high-performance supercapacitors. Mater Lett 139:81–85

    Article  CAS  Google Scholar 

  13. Li Z, Han J, Fan L, Guo R (2015) Template-free synthesis of Ni7S6 hollow spheres with mesoporous shells for high performance supercapacitors. Cryst Eng Comm 17(9):1952–1958

    Article  CAS  Google Scholar 

  14. Yan Y, Li A, Lu C, Zhai TF, Lu SF, Li WM, Zhou W (2020) Double-layered yolk-shell microspheres with NiCo2S4-Ni9S8-C hetero-interfaces as advanced battery-type electrode for hybrid supercapacitors. Chem Eng J 396:125316

    Article  CAS  Google Scholar 

  15. Fu W, Zhao Y, Mei J, Wang FJ, Han WH, Wang FC, Xie EQ (2018) Honeycomb-like Ni3S2 nanosheet arrays for high-performance hybrid supercapacitors. Electrochim Acta 283:737–743

    Article  CAS  Google Scholar 

  16. Wang H, Liang M, Duan D, Shi WY, Song YY, Sun ZB (2018) Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem Eng J 350:523–533

    Article  CAS  Google Scholar 

  17. Li Y, Chen X, Cao Y, Zhou WY, Chai H (2020) The ultralong cycle life of solid flexible asymmetric supercapacitors based on nickel vanadium sulfide nanospheres. Cryst Eng Comm 22(31):5226–5236

    Article  CAS  Google Scholar 

  18. Cao H, Wang X, Chen X, Liu HY, Zheng JS, Zhou WF (2017) Hollow cubic double layer structured Cu7S4/NiS nanocomposites for high-performance supercapacitors. J Mater Chem A 5(39):20729–20736

    Article  CAS  Google Scholar 

  19. Yan H, Zhu K, Liu X, Wang YH, Wang YB, Zhang DY, Lu Y, Peng T, Liu YX, Luo YS (2020) Ultra-thin NiS nanosheets as advanced electrode for high energy density supercapacitors. RSC Adv 10(15):8760–8765

    Article  CAS  Google Scholar 

  20. Zhao J, Guan B, Hu B, Xu ZY, Wang DW, Zhang HH (2017) Vulcanizing time controlled synthesis of NiS microflowers and its application in asymmetric supercapacitors. Electrochim Acta 230:428–437

    Article  CAS  Google Scholar 

  21. Javed MS, Dai S, Wang M, Xi Y, Lang Q, Guo DL, Hu CG (2015) Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors. Nanoscale 7(32):13610–13618

    Article  CAS  Google Scholar 

  22. Wang Y, Liu F, Ji Y, Yang M, Liu W, Wang W, Sun QS, Zhang ZQ, Zhao XD, Liu XY (2015) Controllable synthesis of various kinds of copper sulfides (CuS, Cu7S4, Cu9S5) for high-performance supercapacitors. Dalton Trans 44(22):10431–10437

    Article  CAS  Google Scholar 

  23. Zhou Y, Zhao S, Yu X, Li YL, Chen HM, Han L (2020) Metal-organic framework templated fabrication of Cu7S4@Ni(OH)2 core–shell nanoarrays for high-performance supercapacitors. Inorg Chem Front 7(2):427–436

    Article  CAS  Google Scholar 

  24. You Y, Qu K, Shi C, Sun Z, Huang ZH, Li J, Dong MY, Guo ZH (2020) Binder-free CuS/ZnS/sodium alginate/rGO nanocomposite hydrogel electrodes for enhanced performance supercapacitors. Int J Biol Macromol 162:310–319

    Article  CAS  Google Scholar 

  25. Liang J, Li M, Chai Y, Luo M, Li L (2017) TEOA-mediated formation of hollow core-shell structured CoNi2S4 nanospheres as a high-performance electrode material for supercapacitors. J Power Sources 362:123–130

    Article  CAS  Google Scholar 

  26. Long L, Tao C, Rong H, Wang ZH (2018) NiCo2S4 nanosheets network supported on Ni foam as an electrode for hybrid supercapacitors. J Alloy Compd 766:149–156

    Article  Google Scholar 

  27. Li Z, Zhao D, Xu C, Ning JQ, Zhong YJ, Zhang ZY, Wang YJ, Hu Y (2018) Reduced CoNi2S4 nanosheets with enhanced conductivity for high-performance supercapacitors. Electrochim Acta 278:33–41

    Article  CAS  Google Scholar 

  28. Elshahawy AM, Li X, Zhang H, Hu YT, Hung K, Guan C, Wang J (2017) Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors. J Mater Chem A 5(16):7494–7506

    Article  CAS  Google Scholar 

  29. Fan LQ, Pan F, Tu QM, Gu Y, Huang JL, Huang YF, Wu JH (2018) Synthesis of CuCo2S4 nanosheet arrays on Ni foam as binder-free electrode for asymmetric supercapacitor. Int J Hydrogen Energy 43(52):23372–23381

    Article  CAS  Google Scholar 

  30. Ouyang Y, Zhang B, Wang C, Xi XF, Lei W, Hao QL (2021) Bimetallic metal-organic framework derived porous NiCo2S4 nanosheets arrays as binder-free electrode for hybrid supercapacitor. Appl Sur Sci 542:148621

    Article  CAS  Google Scholar 

  31. Ouyang Y, Ye H, Xia X, Jiao XY, Li GM, Mutahir S, Wang L, Mandler D, Lei W, Hao QL (2019) Hierarchical electrodes of NiCo2S4 nanosheets-anchored sulfur-doped Co3O4 nanoneedles with advanced performance for battery-supercapacitor hybrid devices. J Mater Chem A 7(7):3228–3237

    Article  CAS  Google Scholar 

  32. Yan Y, Ding S, Zhou X, Hu Q, Feng Y, Zheng QJ, Lin DM, Wei XJ (2021) Controllable preparation of core-shell Co3O4@CoNiS nanowires for ultra-long life asymmetric supercapacitors. J Alloy Compd 867:158941

    Article  CAS  Google Scholar 

  33. Chen K, Xue D (2016) Colloidal supercapacitor electrode materials. Mater Res Bull 83:201–206

    Article  CAS  Google Scholar 

  34. Wei C, Cheng C, Zhao J, Wang ZT, Wu HP, Gu KY, Du WM, Pang H (2015) Mesoporous ZnS-NiS nanocomposites for nonenzymatic electrochemical glucose sensors. Chem Open 4(1):32–38

    Article  CAS  Google Scholar 

  35. Chen H, Du X, Sun J, Wang Y, Zhang YF, Xu CJ (2020) Solvothermal synthesis of novel pod-like MnCo2O4.5 microstructures as high-performance electrode materials for supercapacitors. Int J Hydrogen Energ 45(4):3016–3027

  36. Zhang M, Hu H, Qi J, Wei FX, Meng QK, Ren YJ, Zhan ZZ, Sui YW, Sun Z (2021) Expeditious and controllable synthesis of micron flower-like architecture Cu7S4@LSC via Ni ions morphology confinement for asymmetric button supercapacitor. Electrochim Acta 366:137362

    Article  CAS  Google Scholar 

  37. Arul NS, Cavalcante LS, Han JI (2018) Facile synthesis of ZnS/MnS nanocomposites for supercapacitor applications. J Solid State Electr 22(1):303–313

    Article  CAS  Google Scholar 

  38. Guan B, Li Y, Yin B, Liu KF, Wang DW, Zhang HH, Cheng CJ (2017) Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem Eng J 308:1165–1173

    Article  CAS  Google Scholar 

  39. Li Z, Yu X, Gu A, Tang H, Wang LB, Lou ZS (2017) Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors. Nanotechnology 28(6):065406

    Article  Google Scholar 

  40. Wang T, Yang H, Lu B (2018) Ultra-stable sodium ion battery cathode realized by Cu7S4 nanoparticles. J Power Sources 399:105–114

    Article  CAS  Google Scholar 

  41. Xue Q, Zhang Q (2019) Agar hydrogel template synthesis of Mn3O4 nanoparticles through an ion diffusion method controlled by ion exchange membrane and electrochemical performance. Nanomaterials 9(4):503

    Article  CAS  Google Scholar 

  42. Li X, Cao J, Yang L, Liu X, Liu Q, Hong YZ, Zhou Y, Yang JH (2019) One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications. Dalton Trans 48(7):2442–2454

    Article  CAS  Google Scholar 

  43. Zhai S, Jin K, Zhou M, Fana ZZ, Zhao H, Li XL, Zhao YP, Ge FY, Caia ZS (2020) A novel high performance flexible supercapacitor based on porous carbonized cotton/ZnO nanoparticle/CuS micro-sphere. Coll Surfaces A 584:124025

    Article  CAS  Google Scholar 

  44. Zhou L, He Y, Jia C, Pavlinek V, Saha P, Cheng QL (2017) Construction of hierarchical CuO/Cu2O@NiCo2S4 nanowire arrays on copper foam for high performance supercapacitor electrodes. Nanomaterials 7(9):273

    Article  Google Scholar 

  45. Zhang B, Liu P, Li Z, Song XH (2021) Synthesis of two-dimensional Sr-doped LaNiO3 nanosheets with improved electrochemical performance for energy storage. Nanomaterials 11(1):155

    Article  Google Scholar 

  46. Sharifi S, Yazdani A, Rahimi K (2020) Incremental substitution of Ni with Mn in NiFe2O4 to largely enhance its supercapacitance properties. Sci Rep 10(1):1–15

    Article  Google Scholar 

  47. Lee M, Balasingam SK, Jeong HY, Hong WG, Lee H, Bo R, Kim BH, Jun Y (2015) One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci Rep 5(1):1–8

  48. Li X, Zhou K, Zhou J, Shen JF, Ye MX (2018) CuS nanoplatelets arrays grown on graphene nanosheets as advanced electrode materials for supercapacitor applications. J Mater Sci Technol 34(12):2342–2349

    Article  CAS  Google Scholar 

  49. Yue X, Hu R, Zhu D, Qi JQ, He YZ, Meng QK, Wei FX, Ren YJ, Sui YW (2021) Controlled synthesis and formation mechanism of flower-like CuS/NiS microspheres for supercapacitors. Surf Interfaces 22:100871

    Article  CAS  Google Scholar 

  50. Quan Y, Zhang M, Wang G, Lu L, Wang ZX, Xu HF, Liu S, Min QW (2019) 3D hierarchical porous CuS flower-dispersed CNT arrays on nickel foam as a binder-free electrode for supercapacitors. New J Chem 43(27):10906–10914

    Article  CAS  Google Scholar 

Download references

Funding

We thank the National Natural Science Foundation of China (Grant No. 21065010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangping Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Li, X. & Qiao, Y. NiS/Cu7S4 composites as high-performance supercapacitor electrodes. J Solid State Electrochem 27, 25–36 (2023). https://doi.org/10.1007/s10008-022-05259-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05259-y

Keywords

Navigation