Skip to main content

Reclaimed δ-MnO2 from exhausted Zn/C primary cells as active cathode in secondary Zn2+ ion batteries

Abstract

This work presents the construction of a reversible zinc ion battery using components recovered from exhausted Zn/C primary cells. The reduced cathode material from the primary battery served as raw material to synthesize birnessite-type manganese oxide, which, when working as a cathode in conjunction with an aqueous electrolyte and a recovered zinc anode, exhibits a reversible capacity of 289 mAh g−1 at 20 mA g−1. This performance is similar to that observed for manganese oxide synthesized from potassium permanganate reagent (270 mAh g−1 at 20 mA g−1). The structural characterization shows that the material obtained from recycling activities changes its morphology and surface area due to the presence of sodium ions during the synthesis process, and these remain in their structure. These changes promote a 60% capacity lost after being cycled at different charges, compared to 26% of δ-MnO2 synthesized from permanganate reagent. The long-term stability test shows that both batteries can retain their capacity after 1000 discharge/charge cycles at a load of 1000 mA g−1. The results support the sustainability of using a primary cell residue to get an electric energy storage device again.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Winter M, Brood RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev. https://doi.org/10.1021/cr020730k

    Article  PubMed  Google Scholar 

  2. Manthiram A (2017) An outlook on lithium ion battery technology. ACS Cent Sci. https://doi.org/10.1021/acscentsci.7b00288

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liang Y, Zhao C-Z, Yuan H, Chen Y, Zhang W, Huang J-Q, Yu D, Liu Y, Titrici M-M, Chueh Y-L, Yu H, Zhang Q (2019) A review of rechargeable batteries for portable electronic devices. InfoMat. https://doi.org/10.1002/inf2.12000

    Article  Google Scholar 

  4. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization, and applications. Chem Soc Rev. https://doi.org/10.1039/C5CS00580A

    Article  PubMed  PubMed Central  Google Scholar 

  5. Prasad GG, Shetty N, Thakur S, Bommegowda R, Bommegowda KB (2019) Supercapacitor technology and its applications: a review. IOP Conf Ser: Mater Sci. https://doi.org/10.1088/1757-899X/561/1/012105

    Article  Google Scholar 

  6. Soloveichik GL (2015) Flow batteries: current status and trends. Chem Rev. https://doi.org/10.1021/cr500720t

    Article  PubMed  Google Scholar 

  7. Ye R, Henkensmeier D, Yoon SJ, Huang Z, Kim DK, Chang Z, Kim S, Chen R (2018) Redox flow batteries for energy storage: a technology review. J Electrochem En Conv Stor doi 10(1115/1):4037248

    Google Scholar 

  8. Ding Y, Guo X, Yu G (2020) Next-generation liquid metal batteries based on the chemistry of fusible alloys. ACS Cent Sci. https://doi.org/10.1021/acscentsci.0c00749

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hwang J-Y, Myung S-T, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev. https://doi.org/10.1039/C6CS00776G

    Article  PubMed  Google Scholar 

  10. Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad MI (2020) Prospects in anode materials for sodium ion batteries — a review. Renew Sust Energy Rev. https://doi.org/10.1016/j.rser.2019.109549

    Article  Google Scholar 

  11. Hosaka T, Kubota K, Hameed AS, Komaba S (2020) Research development on K-ion batteries. Chem Rev. https://doi.org/10.1021/acs.chemrev.9b00463

    Article  PubMed  Google Scholar 

  12. Rajagopalan R, Tang Y, Ji X, Jia CH, Wang H (2020) Advancements and challenges in potassium ion batteries: a comprehensive review. Adv Func Mater. https://doi.org/10.1002/adfm.201909486

    Article  Google Scholar 

  13. Sun X, Duffort V, Mehdi BL, Browning ND, Nazar LF (2016) Investigation of the mechanism of Mg insertion in birnessite in nonaqueous and aqueous rechargeable Mg-ion batteries. Chem Mater. https://doi.org/10.1021/acs.chemmater.5b03983

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang F, Fan X, Gao T, Sun W, Ma Z, Yang CH, Han F, Xu K, Wang Ch (2017) High voltage aqueous magnesium ion batteries. ACS Cent Sci. https://doi.org/10.1021/acscentsci.7b00361

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xu Ch, Li B, Du H, Kang F (2012) Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed. https://doi.org/10.1002/anie.201106307

    Article  Google Scholar 

  16. Zhang L, Chen L, Zhou X, Liu X (2014) Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv Energy Mater. https://doi.org/10.1002/aenm.201400930

    Article  Google Scholar 

  17. Alfaruqi MH, Mathew V, Gim J, Kim S, Song J, Baboo JP, Choi SH, Kim J (2015) Electrochemically induced structural transformation in a γ-MnO2 cathode of high-capacity zinc-ion battery system. Chem Mater. https://doi.org/10.1021/cm504717p

    Article  Google Scholar 

  18. He P, Quan Y, Xu X, Yan M, Yang W, An Q, He L, Mai L (2017) High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small. https://doi.org/10.1002/smll.201702551

    Article  PubMed  PubMed Central  Google Scholar 

  19. Corpuz RD, De Juan LMZ, Praserthdam S, Pornprasertsuk R, Yonezawa T, Nguyen MY, Khaewhom S (2019) Annealing induced a well-ordered single crystal δ-MnO2 and its electrochemical performance in zinc-ion battery. Sci Rep. https://doi.org/10.1038/s41598-019-51692-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang D, Wang L, Liang G, Li H, Liu Z, Tang Z, Liang J, Zhi Ch (2019) A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano. https://doi.org/10.1021/acsnano.9b04916

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yadav GG, Turney D, Huang J, Wei X, Banerjee S (2019) Breaking the 2 V barrier in aqueous zinc chemistry: creating 2.45 and 2.8 V MnO2-Zn aqueous batteries. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.9b01643

    Article  Google Scholar 

  22. Zhang N, Cheng F, Liu J, Wang L, Long X, Liu X, Li F, Chen J (2017) Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nature Comm. https://doi.org/10.1038/s41467-017-00467-x

    Article  Google Scholar 

  23. Wang X, Wang F, Wang L, Li M, Wang Y, Chen B, Zhu Y, Fu L, Zha L, Zhang L, Wu Y, Huang Y (2016) An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv Mater. https://doi.org/10.1002/adma.201505370

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu X, Xiang Y, Peng Q, Wu X, Li Y, Tang F, Song R, Liu Z, He Z, Wu X (2017) Green-low-cost rechargeable aqueous zinc-ion-batteries using hollow porous spinel ZnMnO4 as cathode material. J Mater Chem A. https://doi.org/10.1039/C7TA00100B

    Article  Google Scholar 

  25. Li G, Yang Z, Jiang Y, Jin Ch, Huang W, Ding X, Huang Y (2016) Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy. https://doi.org/10.1016/j.nanoen.2016.04.051

    Article  Google Scholar 

  26. Jia Z, Wang B, Wang Y (2015) Copper hexacyanoferrate with well-defined open framework as a positive electrode for aqueous zinc ion batteries. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2014.11.014

    Article  Google Scholar 

  27. Hashemzadeh F, Motlagh MMK, Maghsoudipour A (2009) A comparative study of hydrothermal and sol-gel methods in the synthesis of MnO2 nanostructures. J Sol-Gel Sci Technol. https://doi.org/10.1007/s10971-009-1978-2

    Article  Google Scholar 

  28. Zhu G, Li H, Deng L, Liu Z-H (2010) Low-temperature synthesis of δ-MnO2 with large surface area and its capacitance. Mater Lett. https://doi.org/10.1016/j.matlet.2010.05.019

    Article  Google Scholar 

  29. Xie Y, Yu Y, Gong X, Guo Y, Guo Y, Wang Y, Lu G (2015) Effect of the crystal plane figure on the catalytic performance of MnO2 for the total oxidation of propane. CrystEngComm. https://doi.org/10.1039/C5CE00058K

    Article  Google Scholar 

  30. McLarnon FR, Cairns EJ (1991) The secondary alkaline zinc electrode. J Electrochem Soc. https://doi.org/10.1149/1.2085653

    Article  Google Scholar 

  31. Alkaline Primary Batteries Global Market Report 2021: COVID-19 Impact and Recovery to 2030 (2021) https://www.researchandmarkets.com/reports/5323117/alkaline-primary-batteries-global-market-report

  32. Jia Z, Wang J, Wang Y, Li B, Wang B, Qi T, Wang X (2016) Interfacial synthesis of δ-MnO2 nano-sheets with a large surface area and their application in electrochemical capacitors. J Mater Sci Tech. https://doi.org/10.1016/j.jmst.2015.08.003

    Article  Google Scholar 

  33. Sotomayor FJ, Cychocz KA, Thommes M (2018) Characterization of micro/mesoporous materials physisorption: concepts and case studies. Acc Mater Suf Res 3(2):34–50

    Google Scholar 

  34. Alfaruqi MH, Gim J, Kim S, Song J, Pham DT, Jo J, Xiu Z, Mathew V, Kim J (2015) A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Comm Electrochem. https://doi.org/10.1016/j.elecom.2015.08.019

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ignacio A. Rivero, E. A. Reynoso-Soto, S. Perez-Sicairos, and M. Eloisa Aparicio Ceja for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Calva-Yáñez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-López, M.A., Oropeza-Guzmán, M.T. & Calva-Yáñez, J.C. Reclaimed δ-MnO2 from exhausted Zn/C primary cells as active cathode in secondary Zn2+ ion batteries. J Solid State Electrochem 26, 2479–2489 (2022). https://doi.org/10.1007/s10008-022-05257-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05257-0

Keywords

  • Recycling of exhausted Zn/C batteries
  • Electrochemical energy storage
  • Zinc ion batteries
  • Manganese oxide