Skip to main content
Log in

Electrosynthesis of nanocomposites of Ag, Au, Pd nanoparticles with aluminum(III), zinc(II), and titanium(IV) oxide-hydroxides

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The two-step electrosyntheses of metal nanoparticles (MNP) (M = Pd, Ag, Au) nanocomposites with aluminum(III), zinc(II), titanium(IV) oxide-hydroxides were carried out. It has been shown that the first step of the oxide-hydroxides synthesis in an undivided cell using soluble Al, Zn, or Ti anodes and dissolved atmospheric oxygen as reagent proceeds efficiently at controlled potentials of oxygen reduction to a superoxide ion in medium DMSO/0.1 M Bu4NCl with a current yield of 141% (Al), 102% (Zn), 110% (Ti), and formation of an amorphous phase. The second step consists of mediated electrosynthesis of MNPs in the obtained solutions of oxide-hydroxides and is carried out using methylviologen as a mediator and cetyltrimethylammonium chloride (CTAC) as a stabilizer. MNPs obtained in the solution bulk quantitatively or partially bound to the oxide-hydroxides. PdNPs are combined with one common CTAC shell and are agglomerates of smaller nanoparticles (~ Pd = 6 ± 2 nm). Ag and Au NPs are individual; their size (amorphous part) is higher, depends on the oxide-hydroxide component in nanocomposites, although this component does not affect the size of metal crystallites. Obtained nanocomposites exhibit catalytic activity in the reaction of p-nitrophenol reduction by sodium borohydride, which increases with increasing of CTAC concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Han X, Ling X, Yu D, Xie D, Li L, Peng S, Zhong C, Zhao N, Deng Y, Hu W (2019) Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv Mater 31:1905622/1–9. https://doi.org/10.1002/adma.201905622

    Article  CAS  Google Scholar 

  2. Kuncser V, Coman SM, Kemnitz EV, Parvulescu I (2015) Magnetic nanocomposites for an efficient valorization of biomass. J Appl Phys 117:17D724/1–4. https://doi.org/10.1063/1.4918763

    Article  CAS  Google Scholar 

  3. Pomogaylo AD, Rosenberg AS, Uflyand IE (2002) Nanoparticles of metals in polymers. Khimia, Moscow

    Google Scholar 

  4. San KA, Shon YS (2018) Synthesis of alkanethiolate-capped metal nanoparticles using alkyl thiosulfate ligand precursors: a method to generate promising reagents for selective catalysis. Nanomaterials 8:1–21. https://doi.org/10.3390/nano8050346

    Article  CAS  Google Scholar 

  5. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  PubMed  Google Scholar 

  6. Liu T, Wang QT, Sun YH, Zhao M (2019) Facile synthesis of monodispersed Co nanoparticles on titanium carbides for hydrolysis of ammonia borane at mild temperature. J Nanosci Nanotechnol 19:7392–7397. https://doi.org/10.1166/jnn.2019.16722

    Article  CAS  PubMed  Google Scholar 

  7. Suzdalev IP (2006) Nanotechnology. Physicochemistry of nanoclusters, nanostructures and nanomaterials. KomKniga, Moscow

  8. Tang J, Meng H, He Y (2017) Energy-saving synthesis of electrolytic manganese dioxide using oxygen cathode with Pt/TiO2-CNx nanocatalys. J Appl Electrochem 47:653–659. https://doi.org/10.1007/s10800-017-1065-2

    Article  CAS  Google Scholar 

  9. Roldughin VI (2000) Quantum-size colloid metal systems. Russ Chem Rev 69:821–843. https://doi.org/10.1070/RC2000v069n10ABEH000605

    Article  CAS  Google Scholar 

  10. Volkov VV, Kravchenko TA, Roldughin VI (2013) Metal nanoparticles in catalytic polymer membranes and ion-exchange systems for advanced purification of water from molecular oxygen. Russ Chem Rev 82:465–482. https://doi.org/10.1070/RC2013v082n05ABEH004325

    Article  CAS  Google Scholar 

  11. Dykman LA, Bogatyrev VA (2007) Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry. Russ Chem Rev 76:181–194. https://doi.org/10.1070/RC2007v076n02ABEH003673

    Article  CAS  Google Scholar 

  12. Kharisov BI, Kharissova OV, Ortiz-Mendez U (2012) Handbook of less-common nanostructures. CRC Press, New York

    Book  Google Scholar 

  13. Wang A, Li J, Zhang T (2018) Heterogeneous single-atom catalysis Nat Rev Chem 2:65–81. https://doi.org/10.1038/s41570-018-0010-1

    Article  CAS  Google Scholar 

  14. Yanilkin VV, Nastapova NV, Nasretdinova GR, Osin YN, Evtyugin VG, Ziganshina AYu, Gubaidullin AT (2019) Structure and catalytic activity of ultrasmall Rh, Pd and (Rh + Pd) nanoparticles obtained by mediated electrosynthesis. New J Chem 43:3931–3945. https://doi.org/10.1039/C8NJ06233A

    Article  CAS  Google Scholar 

  15. Yanilkin VV, Nasretdinova GR, Kokorekin VA (2018) Mediated electrochemical synthesis of metal nanoparticles. Russ Chem Rev 87:1080–1110. https://doi.org/10.1070/RCR4827

    Article  CAS  Google Scholar 

  16. Yanilkin VV, Nastapova NV, Fazleeva RR, Nasretdinova GR, Sultanova ED, Ziganshina AY, Gubaidullin AT, Samigullina AI, Evtugin VG, Vorobev VV, Osin YN (2018) Electrochemical synthesis of metal nanoparticles using a polymeric mediator, whose reduced form is adsorbed (deposited) on an electrode. Russ Chem Bull 67:215–229. https://doi.org/10.1007/s11172-018-2062-2

    Article  CAS  Google Scholar 

  17. Nasretdinova GR, Fazleeva RR, Osin YN, Evtugyn VG, Gubaidullin AT, Ziganshina AY, Yanilkin VV (2018) Methylviologen mediated electrochemical synthesis of catalytically active ultrasmall bimetallic PdAg nanoparticles stabilized by CTAC. Electrochim Acta 285:149–163. https://doi.org/10.1016/j.electacta.2018.07.109

    Article  CAS  Google Scholar 

  18. Yanilkin VV, Fazleeva RR, Nasretdinova GR, Osin YN, Zhukova NA, Mamedov VA (2020) Benzimidazo[1’,2’:1,2]quinolino[4,3-b][1,2,5]oxodiazolo[3,4-f]quinoxaline — new mediator for electrosynthesizing metal nanoparticles. Russ J Electrochem 56:646–659. https://doi.org/10.31857/S042485702008006X

    Article  CAS  Google Scholar 

  19. Yanilkin VV, Fazleeva RR, Nasretdinova GR, Osin YN, Zhukova NA, Gubaidullin AT, Samigullina AI, Mamedov VA (2021) Mediated electrosynthesis and catalytic activity of metal nanoparticles nanocomposites with poly(N-vinylpyrrolidone) and nanocellulose. Russ J Electrochem 57:30–40. https://doi.org/10.31857/S0424857021010114

    Article  CAS  Google Scholar 

  20. Gilanizadeh M, Zeynizadeh B (2018) Binary copper and iron oxides immobilized on silica layered magnetite as a new reusable heterogeneous nanostructure catalyst for the Knoevenagel condensation in water. Res Chem Intermed 44:6053–6070. https://doi.org/10.1007/s11164-018-3475-0

    Article  CAS  Google Scholar 

  21. Aryanasab F (2016) A magnetically recyclable iron oxide-supported copper oxide nanocatalyst (Fe3O4-CuO) for one-pot synthesis of S-aryl dithiocarbamates under solvent-free conditions. RSC Adv 6:32018–32024. https://doi.org/10.1039/C5RA20524G

    Article  CAS  Google Scholar 

  22. Yaseen M, Shah Z, Veses RC, Dias SLP, Lima ÉC, dos Reis GS, Vaghetti JCP, Alencar WSD, Mehmood K (2017) Photocatalytic studies of TiO2/SiO2 nanocomposite xerogels. J Anal Bioanal Tech 8:1–4. https://doi.org/10.4172/2155-9872.1000348

    Article  CAS  Google Scholar 

  23. Kelly SR, Shi X, Back S, Vallez L, Park SY, Siahrostami S, Zheng X, Nørskov JK (2019) ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide. ACS Catal 9:4593–4599. https://doi.org/10.1021/acscatal.8b04873

    Article  CAS  Google Scholar 

  24. Lee SW, Song JT, Kim J, Oh J, Park JY (2018) Enhanced catalytic activity for CO oxidation by the metal–oxide perimeter of TiO2/nanostructured Au inverse catalysts. Nanoscale 10:3911–3917. https://doi.org/10.1039/C7NR08168E

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Wu Q, Bu X, Hang Z, Wang Z, Wang Q, Ma Y (2018) In situ formation of Pt–Au nanoparticles on magnetic composites carriers: tuning catalytic activity by incorporation of different metal oxides. Bull Korean Chem Soc 39:71–77. https://doi.org/10.1002/bkcs.11347

    Article  CAS  Google Scholar 

  26. Liu M, Tang W, Xu Y, Yu H, Yin H, Zhao S, Zhou S (2018) Pd-SnO2/Al2O3 heteroaggregate nanocatalysts for selective hydrogenations of p-nitroacetophenone and p-nitrobenzaldehyde. Appl Catal 549:273–279. https://doi.org/10.1016/j.apcata.2017.10.004

    Article  CAS  Google Scholar 

  27. Supriya P, Srinivas BTV, Chowdeswari K, Naidu NVS, Sreedhar B (2018) Biomimetic synthesis of gum acacia mediated Pd-ZnO and Pd-TiO2 - Promising nanocatalysts for selective hydrogenation of nitroarenes. Mater Chem Phys 204:27–36. https://doi.org/10.1016/j.matchemphys.2017.10.026

    Article  CAS  Google Scholar 

  28. Hu T, Wang Y, Liu Q, Zhang L, Wang H, Tang T, Chen W, Zhao M, Jia J (2017) In-situ synthesis of palladium-base binary metal oxide nanoparticles with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Int J Hydrogen Energy 42:25951–25959. https://doi.org/10.1016/j.ijhydene.2017.08.160

    Article  CAS  Google Scholar 

  29. An K, Somorjai GA (2015) Nanocatalysis I: synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catal Lett 145:233–248. https://doi.org/10.1007/s10562-014-1399-x

    Article  CAS  Google Scholar 

  30. Eremenko A, Smirnova N, Gnatiuk I, Linnik O, Vityuk N, Mukha Y, Korduban A (2011) In: Cuppoletti J (ed.) Silver and gold nanoparticles on Sol-Gel TiO2, ZrO2, SiO2 surfaces: optical spectra, photocatalytic activity, bactericide properties, , nanocomposites and polymers with analytical methods. InTech, Rijeka. https://doi.org/10.5772/18252

  31. Feng F, Shang Z, Wang L, Zhang X, Liang X, Wang Q (2020) Structure-sensitive hydro-conversion of oleic acid to aviation-fuelrange-alkanes over alumina-supported nickel catalyst. Catal Commun 134:105842/1–5 https://doi.org/10.1016/j.catcom.2019.105842

  32. Lai KY, Manthiram A (2018) Evolution of exsolved nanoparticles on a perovskite oxide surface during a redox process. Chem Mater 30:2838–2847. https://doi.org/10.1021/acs.chemmater.8b01029

    Article  CAS  Google Scholar 

  33. Yang W, Wang X, Song S, Zhang H (2019) Syntheses and applications of noble-metal-free CeO2-based mixed-oxide nanocatalysts. Chem 5:1743–1774. https://doi.org/10.1016/j.chempr.2019.04.009

    Article  CAS  Google Scholar 

  34. Majhi SM, Naik GK, Lee HJ, Song HG, Lee CR, Lee IH, Yu YT (2018) Au@NiO core-shell nanoparticles as a p-type gas sensor: novelsynthesis, characterization, and their gas sensing properties withsensing mechanism. Sens Actuators B 268:223–231. https://doi.org/10.1016/j.snb.2018.04.119

    Article  CAS  Google Scholar 

  35. Liu J, Zou S, Li S, Liao X, Hong Y, Xiao L, Fan J (2013) A general synthesis of mesoporous metal oxides with well-dispersed metal nanoparticles via a versatile sol–gel process. J Mater Chem A 1:4038–4047. https://doi.org/10.1039/C3TA00570D

    Article  CAS  Google Scholar 

  36. Padbury RP, Halbur JC, Krommenhoek PJ, Tracy JB, Jur JS (2015) Thermal stability of gold nanoparticles embedded within metal oxide frameworks fabricated by hybrid modifications onto sacrificial textile templates. Langmuir 31:1135–1141. https://doi.org/10.1021/la504094g

    Article  CAS  PubMed  Google Scholar 

  37. Kuriganova AB, Leontyev IN, Alexandrin AS, Maslova OA, Rakhmatullin AI, Smirnova NV (2017) Electrochemically synthesized Pt/TiO2/C catalysts for direct methanol fuel cell applications. Mendeleev Commun 27:67–69. https://doi.org/10.1016/j.mencom.2017.01.021

    Article  CAS  Google Scholar 

  38. Kuriganova AB, Leontyeva DV, Ivanov S, Bund A, Smirnova NV (2016) Electrochemical dispersion technique for preparation of hybrid MOx/C supports and Pt/MOx/C electrocatalysts for low-temperature fuel cells. J Appl Electrochem 46:1245–1260. https://doi.org/10.1007/s10800-016-1006-5

    Article  CAS  Google Scholar 

  39. Doronkin DE, Kuriganova AB, Leontyev IN, Baier S, Lichtenberg H, Smirnova NV, Grunwaldt JD (2016) Electrochemically synthesized Pt/Al2O3 oxidation catalysts. Catal Lett 146:452–463. https://doi.org/10.1007/s10562-015-1651-z

    Article  CAS  Google Scholar 

  40. Zhang X, Guo L, Gan L, Zhang Y, Wang J, Johnson LR, Bruce PG, Peng Z (2017) LiO2: cryosynthesis and chemical/electrochemical reactivities. J Phys Chem Lett 8:2334–2338. https://doi.org/10.1021/acs.jpclett.7b00680

    Article  CAS  PubMed  Google Scholar 

  41. Yanilkin VV, Fazleeva RR, Nasretdinova GR, Osin YN, Gubaidullin AT, Ziganshina AY (2020) Two-step one-pot electrosynthesis and catalytic activity of the CoO–CoO∙xH2O supported silver nanoparticles. J Solid State Electrochem 24:829–842. https://doi.org/10.1007/s11705-017-1669-4

    Article  CAS  Google Scholar 

  42. Fazleeva RR, Nasretdinova GR, Osin YN, Ziganshina AY, Yanilkin VV (2020) Two-step electrosynthesis and catalytic activity of CoOCoO•xH2O-supported Ag, Au, and Pd nanoparticles. Russ Chem Bull 69:241–254. https://doi.org/10.1007/s11172-020-2752-4

    Article  CAS  Google Scholar 

  43. Fazleeva RR, Nasretdinova GR, Osin YN, Samigullina AI, Gubaidullin AT, Yanilkin VV (2020) CoO–xCo(OH)2 supported silver nanoparticles: electrosynthesis in acetonitrile and catalytic activity. Mendeleev Commun 30:456–458. https://doi.org/10.1016/j.mencom.2020.07.016

    Article  CAS  Google Scholar 

  44. Nastapova NV, Nasretdinova GR, Osin YN, Gubaidullin AT, Yanilkin VV (2020) Two-step mediated electrosynthesis and catalytic activity of Au/Cu2O@poly(N-vinylpyrrolidone) nanocomposite. ECS J Solid State Sci Technol 9:061007/1–14. https://doi.org/10.1149/2162-8777/aba1fc

  45. Fazleeva RR, Nasretdinova GR, Gubaidullin AT, Evtyugin VG, Yanilkin VV (2022) The two-step electrosynthesis of nanocomposites of Ag, Au, and Pd nanoparticles with iron(II) oxide-hydroxide. New J Chem 46:2380–2392. https://doi.org/10.1039/D1NJ05844D

    Article  CAS  Google Scholar 

  46. Toledo RR, Santoyo VR, Sánchez DM, Rosales MM (2018) Effect of aluminum precursor on physicochemical properties of Al2O3 by hydrolysis/precipitation method. Nova Scientia 10:83–99. https://doi.org/10.21640/ns.v10i20.1217

    Article  Google Scholar 

  47. Segal FM, Correa MF, Bacani R, Castanheira B, Politi MJ, Brochsztain S, Rezende Triboni E (2018) Novel synthesis route of mesoporous γ-alumina from polyoxohydroxide aluminum. Mater Res 21:1–8. https://doi.org/10.1590/1980-5373-MR-2017-0674

    Article  Google Scholar 

  48. Amuthavalli P, Hwang JS, Dahms HU, Wang L, Anitha J, Vasanthakumaran M, Gandhi AD, Murugan K, Subramaniam J, Paulpandi M, Chandramohan B, Singh S (2021) Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects. Sci Rep 1(8837):1–13. https://doi.org/10.1038/s41598-021-88164-0

    Article  CAS  Google Scholar 

  49. Khatamian M, Divband B, Jodaei A (2012) Degradation of 4-nitrophenol (4-NP) using ZnO nanoparticles supported on zeolites and modeling of experimental results by artificial neural networks. Mater Chem Phys 134:31–37. https://doi.org/10.1016/j.matchemphys.2012.01.091

    Article  CAS  Google Scholar 

  50. Al-Amin M, Dey SC, Ur Rashid T, Ashaduzzaman M, Shamsuddin SM (2016) Solar assisted photocatalytic degradation of reactive azo dyes in presence of anatase titanium dioxide. Inter J Latest Res Eng Technol 2:14–21

    Google Scholar 

  51. Hu S, Li F, Fan Z (2012) Preparation of SiO2-coated TiO2 composite materials with enhanced photocatalytic activity under UV light. Bull Korean Chem Soc 33:1895–1899. https://doi.org/10.5012/bkcs.2012.33.6.1895

    Article  CAS  Google Scholar 

  52. Mann CK, Barnes KK (1970) Electrochemical reactions in nonaqueous systems. Marcel Dekker Inc, New York

    Google Scholar 

  53. Tafesh AM, Weiguny J (1996) A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem Rev 96:2035–2052. https://doi.org/10.1021/cr950083f

    Article  CAS  PubMed  Google Scholar 

  54. Astruc D (2008) Nanoparticles and Catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  55. Lara P, Philippot K (2014) The hydrogenation of nitroarenes mediated by platinum nanoparticles: an overview. Catal Sci Technol 4:2445–2465. https://doi.org/10.1039/C4CY00111G

    Article  CAS  Google Scholar 

  56. Babji P, Rao VL (2016) Catalytic reduction of 4-Nitrophenol to 4-Aminophenol by using Fe2O3-Cu2O-TiO2 nanocomposite. Int J Chem Stud 4:123–127

    CAS  Google Scholar 

  57. Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf A 196:247–257. https://doi.org/10.1016/S0927-7757(01)01040-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The IR spectra registration was carried out on the equipment of the Assigned Spectral-Analytical Center of FRC Kazan Scientific Center of RAS.

Funding

Partial financial support was received from the Russian Foundation for Basic Research [grant number 20–03-00007].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rezeda R. Fazleeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2009 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazleeva, R.R., Nasretdinova, G.R., Evtyugin, V.G. et al. Electrosynthesis of nanocomposites of Ag, Au, Pd nanoparticles with aluminum(III), zinc(II), and titanium(IV) oxide-hydroxides. J Solid State Electrochem 26, 2271–2285 (2022). https://doi.org/10.1007/s10008-022-05248-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05248-1

Keywords

Navigation