Skip to main content
Log in

Bimetal cobalt-zinc MOF and its derivatives as anode materials for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The purplish-red rod-like crystal structure of novel bimetallic metal–organic-frameworks (MOF) {CoZn[(4,4′-BDA)(Phen)]2}n has been obtained by the reaction of Co2+, Zn2+ (the molar ratio Co: Zn = 1:1), 1,10-phenanthroline (Phen) and 4, 4′-biphenyldicarboxylic acid (4,4′-H2BDA), in which Zn ions of the previously reported monometallic MOF {[Zn(4,4′-BDA)(Phen)]2·(HCON(CH3)2}n are partly substituted by Co ions. The crystal structure of {CoZn[(4,4′-BDA)(Phen)]2}n has been characterized by IR, X-ray photoelectron spectroscopy (XPS), and single-crystal X-ray diffraction analysis. Then, the precursors CoZn-MOF-B@C were obtained by adding a surfactant, activated carbon, and NaOH. Its derivative ZnO/CoO@C was used as anode material for lithium-ion batteries, which showed good lithium storage performance. The initial discharge specific capacity of ZnO/CoO@C is 1437.9 mAh g−1 at a current density of 0.2 A g−1, and after 100 cycles, the specific capacity drops to 741.8 mAh g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cao Z, Yang Y, Qin J, He J, Su Z (2021) Co3O4 polyhedron@MnO2 nanotube composite as anode for high-performance lithium-ion batteries. Small 17:2008165

    Article  CAS  Google Scholar 

  2. Gao L, Ma T, Zhang L, Yang X (2021) Porous FeP@C frameworks as anode materials for high performance lithium ion capacitors. J Solid State Electr 25:2055–2063

    Article  CAS  Google Scholar 

  3. Zhou J, Yang Q, Xie Q, Ou H, Lin X, Zeb A, Hu L, Wu Y, Ma G (2022) Recent progress in Co–based metal–organic framework derivatives for advanced batteries. J Mater Sci Technol 96:262–284

    Article  Google Scholar 

  4. Duan J, Tang X, Dai H, Yang Y, Wu W, Wei X, Huang Y (2020) Building safe lithium-ion batteries for electric vehicles: a review. Electrochem Energy Rev 3:1–42

    Article  CAS  Google Scholar 

  5. Kong L, Zhong M, Shuang W, Xu Y, Bu X (2020) Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chem Soc Rev 49:2378–2407

    Article  CAS  PubMed  Google Scholar 

  6. Liang W, He S, Quan L, Wang L, Liu M, Zhao Y, Lai X, Bi J, Gao D, Zhang W (2019) Co0.8Zn0.2MoO4/c nanosheet composite: rational construction via a one-stone-three-birds strategy and superior lithium storage performances for lithium-ion batteries. ACS Appl Mater Interfaces 11:42139–42148

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Yue M, Wang S, Zhao Y, Zhang J (2022) A review of performance attenuation and mitigation strategies of lithium-ion batteries. Adv Funct Mater 32:2107769

    Article  CAS  Google Scholar 

  8. Wang H, Bai Y, Jiang X, Zeng M (2021) Bimetal-organic framework derived from ZIF-67 as anodes for high performance lithium-ion batteries. Appl Surf Sci 546:149119

  9. Yu X, Yang J, Yuan Z, Guo L, Sui Z, Wang M (2020) Binder-free 3D porous Fe3O4–Fe2P–Fe@C films as high-performance anode materials for lithium-ion batteries. Ceram Int 46:17469–17477

    Article  CAS  Google Scholar 

  10. Mutahir S, Wang C, Song J, Wang L, Lei W, Jiao X, Khan M. A, Zhou B, Zhong Q, Hao Q (2020) Pristine Co(BDC)TED0.5 a pillared-layer biligand cobalt based metal organic framework as improved anode material for lithium-ion batteries. Appl Mater Today 21:100813

  11. Wu H, Ai Q, Yang C, Huang R, Jiang G, Xiong J, Yuan S (2020) Preparation and electrochemical properties of Fe/Fe3O4@r-GO composite nanocage with 3D hollow structure. J Solid State Electr 25:869–879

    Article  CAS  Google Scholar 

  12. Liu Y, Li W, Xia Y (2021) Recent progress in polyanionic anode materials for Li (Na)-Ion batteries. Electrochem Energy Rev 4:447–472

    Article  CAS  Google Scholar 

  13. Du W, Bai YL, Yang Z, Li ZD, Ma Z, Yuan A, Xu J (2020) A conductive anionic Co-MOF cage with zeolite framework for supercapacitors. Chinese Chem Lett 31:2309–2313

    Article  CAS  Google Scholar 

  14. Liu C, Tian R, Sun D, Liu H, Duan H (2020) MOF-derived 3D hollow porous carbon/graphene composites for advanced lithium-ion battery anodes. J Solid State Chem 290:121568

    Article  CAS  Google Scholar 

  15. Sun W, Tang X, Wang Y (2020) Multi-metal–organic frameworks and their derived materials for Li/Na-Ion batteries. Electrochem Energy Rev 3:127–154

    Article  CAS  Google Scholar 

  16. Bai S, Liu C, Luo R, Chen A (2018) Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine. Appl Surf Sci 437:304–313

    Article  CAS  Google Scholar 

  17. Wang L, Wang Z, Xie L, Zhu L, Cao X (2019) ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 11:16619–16628

    Article  CAS  PubMed  Google Scholar 

  18. Jin Y, Zhao C, Sun Z, Lin Y, Chen L, Wang D, Shen C (2016) Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries. RSC Adv 6:30763–30768

    Article  CAS  Google Scholar 

  19. Li Y, Yin J, Feng Y, Li J, Zhao H, Zhu C, Yue D, Liu Y, Su B, Liu X (2022) Metal-organic framework/polyimide composite with enhanced breakdown strength for flexible capacitor. Chem Eng J 429:132228

    Article  CAS  Google Scholar 

  20. Li C, Lou X, Shen M, Hu X, Guo Z, Wang Y, Hu B, Chen Q (2016) High anodic performance of Co 1,3,5-benzenetricarboxylate coordination polymers for li-ion battery. ACS Appl Mater Interfaces 8:15352–15360

    Article  CAS  PubMed  Google Scholar 

  21. Ma CB, Chen CN, Liu QT (2005) Framework variations in Mn(ii)–organic coordination polymers: solvent templated formation and characterisation of 1D zigzag and straight chain network isomers. CrystEngComm 7:650–655

    Article  CAS  Google Scholar 

  22. Wang X, Li Q, Yang N, Yang Y, He F, Chu J, Gong M, Wu B, Zhang R, Xiong S (2019) Hydrothermal synthesis of NiCo-based bimetal-organic frameworks as electrode materials for supercapacitors. J Solid State Chem 270:370–378

    Article  CAS  Google Scholar 

  23. Wang D, Zhou W, Zhang R, Huang X, Zeng J, Mao Y, Ding C, Zhang J, Liu J, Wen G (2018) MOF-derived Zn–Mn mixed oxides@carbon hollow disks with robust hierarchical structure for high-performance lithium-ion batteries. J Mater Chem A 6:2974–2983

    Article  CAS  Google Scholar 

  24. Zhong M, Kong L, Li N, Liu Y, Zhu J, Bu X (2019) Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries. Coordin Chem Rev 388:172–201

    Article  CAS  Google Scholar 

  25. Bai JD, Zhang YH, Shi H, Shi Q, Shi FN (2021) Synthesis, structure and lithium storage performance of a copper–molybdenum complex polymer based on 4,4′-bipyridine. J Solid State Chem 298:122105

    Article  CAS  Google Scholar 

  26. Bai YW, Shi G, Gao J, Shi FN (2021) Synthesis, crystal structure of a iron-manganese bimetal MOF and its graphene composites with enhanced microwave absorption properties. J Phys Chem Solids 148:109657

    Article  CAS  Google Scholar 

  27. Yadav PK, Kumari N, Pachfule P, Banerjee R, Mishra L (2012) Metal [Zn(II), Cd(II)], 1,10-phenanthroline containing coordination polymers constructed on the skeleton of polycarboxylates: synthesis, characterization, microstructural, and CO2 gas adsorption studies. Cryst Growth Des 12:5311–5319

    Article  CAS  Google Scholar 

  28. Liu J, Wan Y, Liu W, Ma Z, Ji S, Wang J, Zhou Y, Hodgson P, Li Y (2013) Mild and cost-effective synthesis of iron fluoride–graphene nanocomposites for high-rate Li-ion battery cathodes. J Mater Chem A 1:1969–1975

    Article  CAS  Google Scholar 

  29. Chu K, Li Z, Xu S, Yao G, Xu Y, Niu P, Zheng F (2020) MOF-derived hollow NiCo2O4 nanowires as stable Li-ion battery anodes. Dalton Trans 49:10808–10815

    Article  CAS  PubMed  Google Scholar 

  30. Sun C, Yang J, Dai Z, Wang X, Zhang Y, Li L, Chen P, Huang W, Dong X (2016) Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Res 9:1300–1309

    Article  CAS  Google Scholar 

  31. Zheng F, Xia G, Yang Y, Chen Q (2015) MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale 7:9637–9645

    Article  CAS  PubMed  Google Scholar 

  32. Li Z, Liu H, Huang J, Zhang L (2019) MOF-derived α-MnSe/C composites as anode materials for Li-ion batteries. Ceram Int 45:23765–23771

    Article  CAS  Google Scholar 

  33. Cui Z, Liu Q, Xu C, Zou R, Zhang J, Zhang W, Guan G, Hu J, Sun Y (2017) A new strategy to effectively alleviate volume expansion and enhance the conductivity of hierarchical MnO@C nanocomposites for lithium ion batteries. J Mater Chem A 5:21699–21708

    Article  CAS  Google Scholar 

  34. Chai W, Yang F, Yin W, You S, Wang K, Ye W, Rui Y, Tang B (2019) Bi2S3/C nanorods as efficient anode materials for lithium-ion batteries. Dalton Trans 48:1906–1914

    Article  CAS  PubMed  Google Scholar 

  35. Zheng J, He C, Li X, Wang K, Wang T, Zhang R, Tang B, Rui Y (2021) CoS2–MnS@Carbon nanoparticles derived from metal–organic framework as a promising anode for lithium-ion batteries. J Alloy Compd 854:157315

    Article  CAS  Google Scholar 

  36. Li Z, Li C, Ge X, Ma J, Zhang Z, Li Q, Wang C, Yin L (2016) Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 23:15–26

    Article  CAS  Google Scholar 

  37. Wang X, Li Q, Zhang Y, Yang Y, Cao Z (2018) Synthesis and capacitance properties of N-doped porous carbon/NiO nanosheet composites using coal-based polyaniline as carbon and nitrogen source. Appl Surf Sci 442:565–574

    Article  CAS  Google Scholar 

  38. Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y (2017) Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater 29:1605820

    Article  CAS  Google Scholar 

  39. Lin J, Zeng C, Lin X, Xu C, Xu X, Luo Y (2021) Metal-organic framework-derived hierarchical MnO/Co with oxygen vacancies toward elevated-temperature li-ion battery. ACS Nano 15:4594–4607

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Yang N, Li Q, He F, Yang Y, Wu B, Chu J, Zhou A, Xiong S (2019) Solvothermal synthesis of flower-string-like NiCo-MOF/MWCNT composites as a high-performance supercapacitor electrode material. J Solid State Chem 277:575–586

    Article  CAS  Google Scholar 

  41. Wu Z, Tan B, Ma W, Xiong W, Xie Z, Huang X (2018) Mg(2+) incorporated Co-based MOF precursors for hierarchical CNT-containing porous carbons with ORR activity. Dalton Trans 47:2810–2819

    Article  CAS  PubMed  Google Scholar 

  42. Wang K, Wang Y, Zhang Y, Liu F, Shi J, Liu S, Xie X, Cao G, Pan A (2020) Bimetallic organic framework derivation of three-dimensional and heterogeneous metal selenides/carbon composites as advanced anodes for lithium-ion batteries. Nanoscale 12:12623–12631

    Article  CAS  PubMed  Google Scholar 

  43. Zhao J, Li Z, Yao S, Hu C, Wang J, Feng X (2020) Zn/Co-ZIF-derived bi-metal embedded N-doped porous carbon as anodes for lithium-ion batteries. J Mater Sci-Mater El 31:13889–13898

    Article  CAS  Google Scholar 

  44. Huang H, Kong L, He J, Liu M, Zhang J, Bu XH (2022) Engineering carbon-coated hollow hematite spheres for stable lithium-ion batteries. J Solid State Chem 305:122639

    Article  CAS  Google Scholar 

  45. Wang Y, Han J, Gu X, Dimitrijev S, Hou Y, Zhang S (2017) Ultrathin Fe2O3 nanoflakes using smart chemical stripping for high performance lithium storage. J Mater Chem A 5:18737–18743

    Article  CAS  Google Scholar 

  46. Gan Q, He H, Zhao K, He Z, Liu S (2018) Morphology-dependent electrochemical performance of Ni-1,3,5-benzenetricarboxylate metal-organic frameworks as an anode material for Li-ion batteries. J Colloid Interface Sci 530:127–136

    Article  CAS  PubMed  Google Scholar 

  47. Kong L, Zhu J, Shuang W, Bu X (2018) Nitrogen-doped wrinkled carbon foils derived from MOF nanosheets for superior sodium storage. Adv Energy Mater 8:1801515

    Article  CAS  Google Scholar 

  48. Sun R, Qin Z, Li Z, Fan H, Lu S (2020) Binary zinc-cobalt metal-organic framework derived mesoporous ZnCo2O4@NC polyhedron as a high-performance lithium-ion battery anode. Dalton Trans 49:14237–14242

    Article  CAS  PubMed  Google Scholar 

  49. Joshi B, Samuel E, Kim Y, Periyasami G, Rahaman M, Yoon SS (2021) Bimetallic zeolitic imidazolate framework-derived substrate-free anode with superior cyclability for high-capacity lithium-ion batteries. J Mater Sci Technol 67:116–126

    Article  CAS  Google Scholar 

  50. Li Z, Zhao J, Nie J, Yao S, Wang J, Feng X (2020) Co3O4/NiO/C composites derived from zeolitic imidazolate frameworks (ZIFs) as high-performance anode materials for Li-ion batteries. J Solid State Electr 24:1133–1142

    Article  CAS  Google Scholar 

  51. Zhang H, Wang Y, Zhao W, Zou M, Chen Y, Yang L, Xu L, Wu H, Cao A (2017) MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for lithium-ion battery anodes. ACS Appl Mater Inter 9:37813–37822

    Article  CAS  Google Scholar 

  52. Zou Y, Qi Z, Ma Z, Jiang W, Hu R, Duan J (2017) MOF-derived porous ZnO/MWCNTs nanocomposite as anode materials for lithium-ion batteries. J Electroanal Chem 788:184–191

    Article  CAS  Google Scholar 

  53. Huang M, Mi K, Zhang J, Liu H, Yu T, Yuan A, Kong Q, Xiong S (2017) MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J Mater Chem A 5:266–274

    Article  CAS  Google Scholar 

  54. Hu X, Liu X, Chen K, Wang G, Wang H (2019) Core–shell MOF-derived N-doped yolk–shell carbon nanocages homogenously filled with ZnSe and CoSe2 nanodots as excellent anode materials for lithium- and sodium-ion batteries. J Mater Chem A 7:11016–11037

    Article  CAS  Google Scholar 

  55. Ren M (2020) Preparation of MOF Derived Zn-Co-C composite as anode for lithium-ion batteries. Int J Electrochem Sci 15:9543–9553

    Article  CAS  Google Scholar 

  56. Chen K, Guo H, Li W, Wang Y (2021) MOF-derived core-shell CoP@NC@TiO2 composite as a high-performance anode material for li-ion batteries. Chem Asian J 16:322–328

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Science Foundation of China (21762031 and 51562029), Program for Young Talents of Science and Technology of Inner Mongolia Autonomous Region (NJYT-20-A18) and Supported by Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT2214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 282 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Dong, S., Wang, L. et al. Bimetal cobalt-zinc MOF and its derivatives as anode materials for lithium-ion batteries. J Solid State Electrochem 26, 2301–2313 (2022). https://doi.org/10.1007/s10008-022-05247-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05247-2

Keywords

Navigation