Skip to main content
Log in

Characterization of electrochemically visualized latent fingerprints on the steel substrates

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The characterization of electrochemically visualized latent fingerprints on steel surfaces is demonstrated. Optimization of electrochemical conditions of deposited poly(neutral red) (PNR) films on stainless steel substrates, as well as cyclic voltammetry, electrochemical impedance spectroscopy, and ATR FTIR spectroscopy of PNR-modified substrates, was performed. The parameters of the visualization method (supporting electrolyte, monomer concentration, potential range, number of cycles) were gradually changed until the fingerprint was sufficiently visible. The repeatability of measurements under these conditions was especially important, thanks to which many visible fingerprints on steel substrates were successfully obtained. The electrochemical characterization consisted in comparing the redox properties of the metal surfaces themselves before and after the application of the fingerprints or the polymer film PNR. Experimental findings have shown that the use of latent fingerprint visualization is a simple, fast, efficient, and inexpensive method applicable to forensic evidence.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article and the supplementary information files.

Code availability

Not applicable.

References

  1. Champod C, Lennard CJ, Margot P, Stoilovic M (2004) Fingerprints and other ridge skin impressions, 1st edn. CRC Press LLC, Boca Raton, FL, USA. https://doi.org/10.1201/9780203485040

    Book  Google Scholar 

  2. Bersellini C, Garofano L, Giannetto M, Lusardi F, Mori G (2001) Development of latent fingerprints on metallic surfaces using electropolymerization processes. J Forensic Sci 46:871–877. https://doi.org/10.1520/JFS15060J

    Article  CAS  PubMed  Google Scholar 

  3. Brown RM, Hillman AR (2012) Electrochromic enhancement of latent fingerprints by poly(3,4-ethylenedioxythiophene). Phys Chem Chem Phys 14:8653–8661. https://doi.org/10.1039/C2CP40733G

    Article  CAS  PubMed  Google Scholar 

  4. Sapstead RM, Corden N, Hillman AR (2015) Latent fingerprint enhancement via conducting electrochromic copolymer films of pyrrole and 3,4-ethylenedioxythiophene on stainless steel. Electrochim Acta 162:119–128. https://doi.org/10.1016/j.electacta.2014.11.061

    Article  CAS  Google Scholar 

  5. Christofidis G, Morrissey J, Birkett JW (2018) Detection of fingermarks—applicability to metallic surfaces: a literature review. J Forensic Sci 63:1616–1627. https://doi.org/10.1111/1556-4029.13775

    Article  PubMed  Google Scholar 

  6. Challinger SE, Baikie ID, Flannigan G, Halls S, Laing K, Daly L, Daeid NN (2018) Comparison of scanning Kelvin probe with SEM/EPMA techniques for fingermark recovery from metallic surfaces. Forensic Sci Int 291:44–52. https://doi.org/10.1016/j.forsciint.2018.07.025

    Article  CAS  PubMed  Google Scholar 

  7. Najdoski M, Oklevski S, Stojkovic G (2015) Simple chemical method for visualization of sebaceous fingerprints on unfired cartridge cases by Prussian blue deposition. Russ J Appl Chem 88:1896–1901. https://doi.org/10.1134/S10704272150110233

  8. Jasuja OP, Singh G, Almog J (2011) Development of latent fingermarks by aqueous electrolytes. Forensic Sci Int 207:215–222. https://doi.org/10.1016/j.forsciint.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  9. Beresford AL, Brown RM, Hillman AR, Bond JW (2012) Comparative study of electrochromic enhancement of latent fingerprints with existing development techniques. J Forensic Sci 57:93–102. https://doi.org/10.1111/j.1556-4029.2011.01908.x

    Article  CAS  PubMed  Google Scholar 

  10. Broncová G, Slaninová T, Dendisová M (2021) Poly(neutral red) modified metal substrates for fingerprint visualization. Chem Pap 75:6673–6676. https://doi.org/10.1007/s11696-021-01794-6

    Article  CAS  Google Scholar 

  11. Beresford AL, Hillman AR (2010) Electrochromic enhancement of latent fingerprints on stainless steel surfaces. Anal Chem 82:483–486. https://doi.org/10.1021/ac9025434

    Article  CAS  PubMed  Google Scholar 

  12. Bond JW, Phil D (2008) Visualization of latent fingerprint corrosion of metallic surfaces. J Forensic Sci 53:812–822. https://doi.org/10.1111/j.1556-4029.2008.00738.x

    Article  CAS  PubMed  Google Scholar 

  13. Karyakin AA, Bobrova OA, Karyakina EE (1995) Electroreduction of NAD+ to enzymatically active NADH at poly(neutral red) modified electrodes. J Electroanal Chem 399:179–184. https://doi.org/10.1016/0022-0728(95)04300-4

    Article  Google Scholar 

  14. Bauldreay JM, Archer MD (1983) Dye-modified electrodes for photogalvanic cells. Electrochim Acta 28:1515–1552. https://doi.org/10.1016/0013-4686(83)85210-4

    Article  CAS  Google Scholar 

  15. Broncová G, Shishkanova TV, Matějka P, Volf R, Král V (2004) Citrate selectivity of poly(neutral red) electropolymerized films. Anal Chim Acta 511:197–205. https://doi.org/10.1016/j.aca.2004.01.052

    Article  CAS  Google Scholar 

  16. Broncová G, Shishkanova TV, Dendisová M, Člupek M, Kubáč D, Matějka P (2017) Poly(4-amino-2,1,3-benzothiadiazole) films: preparation, characterization and applications. Chem Pap 71:359–366. https://doi.org/10.1007/s11696-016-0045-z

    Article  CAS  Google Scholar 

  17. Stejskal J, Kratochvíl P, Jenkins AD (1996) The formation of polyaniline and the nature of its structures. Polymer 37:367–369. https://doi.org/10.1016/0032-3861(96)81113-x

    Article  CAS  Google Scholar 

  18. Shishkanova TV, Broncová G, Kronďák M, Sýkora D, Král V (2011) Important aspects influencing stability of the electrochemical potential of conductive polymer-based electrodes. J Mater Sci 46:7594–7602. https://doi.org/10.1007/s10853-011-5735-x

  19. Hendel SJ, Young ER (2016) Introduction to electrochemistry and the use of electrochemistry to synthesize and evaluate catalysts for water oxidation and reduction. J Chem Educ 93:1951–1956. https://doi.org/10.1021/acs.jchemed.6b00230

    Article  CAS  Google Scholar 

  20. Broaddus E, Brubaker J, Gold SA (2013) Electrochemical characterization of platinum nanotubules made via template wetting nanofabrication. Int J Electrochem 7:960513. https://doi.org/10.1155/2013/960513

    Article  CAS  Google Scholar 

  21. Pauliukaite R, Ghica ME, Barsan M, Brett CMA (2007) Characterisation of poly(neutral red) modified carbon film electrodes: application as a redox mediator for biosensors. J Solid State Electrochem 11:899–908. https://doi.org/10.1007/s10008-007-0281-9

  22. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355

    Article  CAS  Google Scholar 

  23. Nicholson RS (1965) Some examples of the numerical solution of nonlinear integral equations. Anal Chem 37:667–671

    Article  CAS  Google Scholar 

  24. Meddings N, Heinrich M, Overney F, Lee J-S, Ruiz V, Napolitano E, Seitz S, Hinds G, Raccichini R, Gaberšček M, Park J (2020) Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review. J Power Sources 480:228742. https://doi.org/10.1016/j.jpowsour.2020.228742

    Article  CAS  Google Scholar 

  25. Crane NJ, Bartick EG, Perlman RS, Huffman S (2007) Infrared spectroscopic imaging for noninvasive detection of latent fingerprints. J Forensic Sci 52:48–53. https://doi.org/10.1111/j.1556-4029.2006.00330.x

    Article  CAS  PubMed  Google Scholar 

  26. Bailey MJ, Bright NJ, Croxton RS, Francese S, Ferguson LS, Hinder S, Jickells S, Jones BJ, Jones BN, Kazarian SG (2012) Chemical characterization of latent fingerprints by matrix-assisted laser desorption ionization, time-of-flight secondary ion mass spectrometry, mega electron volt secondary mass spectrometry, gas chromatography/mass spectrometry, X-ray photoelectron spectroscopy, and attenuated total reflection fourier transform infrared spectroscopic imaging: an intercomparison. Anal Chem 84:8514–8523. https://doi.org/10.1021/ac302441y

    Article  CAS  PubMed  Google Scholar 

  27. Dorakumbura BN, Boseley RE, Becker T, Martin DE, Richter A, Tobin MJ, van Bronswjik W, Vongsvivut J, Hackett MJ, Lewis SW (2018) Revealing the spatial distribution of chemical species within latent fingermarks using vibrational spectroscopy. Analyst 143:3961–4208. https://doi.org/10.1039/C7AN01615H

    Article  Google Scholar 

  28. Broncová G, Slaninová T, Trchová M, Prokopec V, Matějka P, Shishkanova TV (2021) Optimization of electrochemical visualization of latent fingerprints with poly(neutral red) on brass surfaces. Polymers 13:3220. https://doi.org/10.3390/polym13193220

  29. Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds. Spectrometric identification of organic compounds, 5th ed.; Wiley: New York, NY, USA. ISBN 0471–63404–2

  30. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts, 3rd ed.; Wiley: New York, NY, USA. ISBN 978-0-470-09307-8

  31. Ozkan SZ, Karpacheva GP, Bondarenko GN, Kolyagin YG (2015) Polymers based on 3-amino-7-dimethylamino-2-methylphenazine hydrochloride: Synthesis, structure, and properties. Polym Sci Ser B 57:106–115. https://doi.org/10.1134/S156009041502013X

  32. Langenburg G, Hall C (2013) Friction ridge skin: comparison and identification. In Wiley Encyclopedia of Forensic Science; John Wiley & Sons Ltd.: Hoboken, NJ, USA. https://doi.org/10.1002/9780470061589.fsa355.pub2

Download references

Acknowledgements

The authors are grateful to doctor J. Stejskal for helpful discussions and A. Lintnerová for her help in measurement with coins.

Funding

This work was supported by a specific university study (UCT Prague, Czech Republic) from the Ministry of Education, Youth and Sports of the Czech Republic. This work was also supported by institutional resources (UCT Prague, Czech Republic).

Author information

Authors and Affiliations

Authors

Contributions

G. Broncová contributed to conceptualization, methodology, investigation, writing—original draft, editing of the manuscript, writing—review and editing. T. Slaninová performed investigation and writing—original draft. M. Trchová contributed to the interpretation of ATR spectra, writing—original draft and editing of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Gabriela Broncová.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 244 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broncová, G., Slaninová, T. & Trchová, M. Characterization of electrochemically visualized latent fingerprints on the steel substrates. J Solid State Electrochem 26, 2423–2433 (2022). https://doi.org/10.1007/s10008-022-05245-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05245-4

Keywords

Navigation