Skip to main content
Log in

Alloyed Cu2Fe1-xBaxSnS4 for photoelectrochemical applications: band gap tailoring and structural transition

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cu2Fe1-xBaxSnS4 (CFBTS) thin films have been fabricated by the low-cost successive ionic layer and adsorption reaction (SILAR) method. The bandgap energies of CFBTS thin films are observed to be tuned from ~ 1.67 to ~ 1.94 eV in a linear manner with increasing Ba content (0 ≤ × ≤ 1). The crystal structure of CFBTS thin films are affected by the change in the Fe/Ba ratio. The structural transition from stannite to trigonal is found with the increased barium content in CFBTS from X-ray diffraction and Raman spectroscopy analysis. Sulfurized CBTS thin film exhibited pure trigonal phase without impurity peaks. Partial replacement of Fe with Ba in CFBTS alters the electronic structure of bulk CFBTS thin films, which affects charge separation and causes a change in band alignment. Finally, photo electrochemical studies were carried out for the as synthesised and the sulfurized samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang W, Winkler MT, Gunawan O et al (2014) Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater 4. https://doi.org/10.1002/aenm.201301465

  2. Wong LH, Zakutayev A, Major JD et al (2019) Emerging inorganic solar cell efficiency tables (Version 1). J Phys Energy 1. https://doi.org/10.1088/2515-7655/ab2338

  3. Kumar M, Dubey A, Adhikari N et al (2015) Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS-Se solar cells. Energy Environ Sci 8:3134–3159. https://doi.org/10.1039/c5ee02153g

    Article  CAS  Google Scholar 

  4. Kumar MS, Madhusudanan SP, Batabyal SK (2018) Substitution of Zn in Earth-Abundant Cu2ZnSn(S, Se4) based thin film solar cells – a status review. Sol Energy Mater Sol Cells 185:287–299. https://doi.org/10.1016/j.solmat.2018.05.003

    Article  CAS  Google Scholar 

  5. Alanazi AM, Alam F, Salhi A et al (2019) A molecular precursor route to quaternary chalcogenide CFTS (Cu2FeSnS4) powders as potential solar absorber materials. RSC Adv 9:24146–24153. https://doi.org/10.1039/c9ra02926e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prabhakar RR, Huu Loc N, Kumar MH et al (2014) Facile water-based spray pyrolysis of earth-abundant Cu2FeSnS4 thin films as an efficient counter electrode in dye-sensitized solar cells. ACS Appl Mater Interfaces 6:17661–17667. https://doi.org/10.1021/am503888v

    Article  CAS  PubMed  Google Scholar 

  7. Meng X, Deng H, He J et al (2015) Synthesis, structure, optics and electrical properties of Cu2FeSnS4 thin film by sputtering metallic precursor combined with rapid thermal annealing sulfurization process. Mater Lett 151:61–63. https://doi.org/10.1016/j.matlet.2015.03.046

    Article  CAS  Google Scholar 

  8. Oueslati H, Ben Rabeh M, Martin J, Kanzari M (2019) Structural, morphological and optical properties of Cu2ZnxFe1-xSnS4 thin films grown by thermal evaporation. Thin Solid Films 669:633–640. https://doi.org/10.1016/j.tsf.2018.11.048

    Article  CAS  Google Scholar 

  9. Guan H, Shen H, Jiao B, Wang X (2014) Structural and optical properties of Cu2FeSnS4 thin film synthesized via a simple chemical method. Mater Sci Semicond Process 25:159–162. https://doi.org/10.1016/j.mssp.2013.10.021

    Article  CAS  Google Scholar 

  10. Vanalakar SA, Patil PS, Kim JH (2018) Recent advances in synthesis of Cu2FeSnS4 materials for solar cell applications: a review. Sol Energy Mater Sol Cells 182:204–219. https://doi.org/10.1016/j.solmat.2018.03.021

    Article  CAS  Google Scholar 

  11. Chatterjee S, Pal AJ (2017) A solution approach to p-type Cu2FeSnS4 thin-films and pn-junction solar cells: role of electron selective materials on their performance. Sol Energy Mater Sol Cells 160:233–240. https://doi.org/10.1016/j.solmat.2016.10.037

    Article  CAS  Google Scholar 

  12. Ghosh A, Chaudhary DK, Biswas A et al (2016) Solution-processed Cu2XSnS4 (X = Fe Co, Ni) photo-electrochemical and thin film solar cells on vertically grown ZnO nanorod arrays. RSC Adv 6:115204–115212. https://doi.org/10.1039/c6ra24149b

    Article  CAS  Google Scholar 

  13. Li L, Liu X, Huang J, Cao M, Chen SY, Shen LW (2012) Solution-based synthesis and characterization of Cu2FeSnS4 nanocrystals. Mater Chem Phys 133:688–691

    Article  CAS  Google Scholar 

  14. Madhusudanan SP, Mohanta K, Batabyal SK (2019) Electrical bistability and memory switching phenomenon in Cu2FeSnS4 thin films: role of p-n junction. J Solid State Electrochem 23:1307–1314. https://doi.org/10.1007/s10008-019-04213-9

    Article  CAS  Google Scholar 

  15. Meng X, Deng H, Zhang Q et al (2017) Investigate the growth mechanism of Cu2FeSnS4 thin films by sulfurization of metallic precursor. Mater Lett 186:138–141. https://doi.org/10.1016/j.matlet.2016.10.002

    Article  CAS  Google Scholar 

  16. Madhusudanan SP, Suresh Kumar M, Yamini Yasoda K et al (2020) Photo-enhanced supercapacitive behaviour of photoactive Cu2FeSnS4 (CFTS) nanoparticles. J Mater Sci Mater Electron 31:752–761. https://doi.org/10.1007/s10854-019-02582-5

    Article  CAS  Google Scholar 

  17. Singh AK, Aggarwal G, Singh RK et al (2018) Synthesis of CZTS/Se and their solid solution from electrodeposited Cu-Sn-Zn metal precursor: a study of S and Se replacement reaction. ACS Appl Energy Mater 1:3351–3358. https://doi.org/10.1021/acsaem.8b00527

    Article  CAS  Google Scholar 

  18. Jiang X, Shao L, Zhang J, Chen J (2014) Preparation and characterization of Cu2ZnSn(SxSe1-x)4 thin films by synchronous sulfo-selenization of single-source evaporated metallic precursors. Acta Metall Sin (English Lett) 27:689–693. https://doi.org/10.1007/s40195-014-0098-3

    Article  CAS  Google Scholar 

  19. Su Z, Tan JMR, Li X et al (2015) Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency. Adv Energy Mater 5. https://doi.org/10.1002/aenm.201500682

  20. Kumar MS, Madhusudanan SP, Rajamani AR et al (2020) Barium substitution in kesterite Cu2ZnSnS4: Cu2Zn1-xBaxSnS4Quinary alloy thin films for efficient solar energy harvesting. Cryst Growth Des 20:4387–4394. https://doi.org/10.1021/acs.cgd.0c00150

    Article  CAS  Google Scholar 

  21. Xiao Z, Meng W, Li JV, Yan Y (2017) Distant-atom mutation for better earth-abundant light absorbers: a case study of Cu2BaSnSe4. ACS Energy Lett 2:29–35. https://doi.org/10.1021/acsenergylett.6b00577

    Article  CAS  Google Scholar 

  22. Wallace SK, Mitzi DB, Walsh A (2017) The steady rise of kesterite solar cells. ACS Energy Lett 2:776–779. https://doi.org/10.1021/acsenergylett.7b00131

    Article  CAS  Google Scholar 

  23. Li J, Wang D, Li X et al (2018) Cation substitution in earth-abundant kesterite photovoltaic materials. Adv Sci 5. https://doi.org/10.1002/advs.201700744

  24. Hong F, Lin W, Meng W, Yan Y (2016) Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics. Phys Chem Chem Phys 18:4828–4834. https://doi.org/10.1039/c5cp06977g

    Article  CAS  PubMed  Google Scholar 

  25. Ge J, Roland PJ, Koirala P et al (2017) Employing overlayers to improve the performance of Cu2BaSnS4 thin film based photoelectrochemical water reduction devices. Chem Mater 29:916–920. https://doi.org/10.1021/acs.chemmater.6b03347

    Article  CAS  Google Scholar 

  26. Zhou Y, Shin D, Ngaboyamahina E et al (2017) Efficient and stable Pt/TiO2/CdS/Cu2BaSn(S, Se)4 photocathode for water electrolysis applications. ACS Energy Lett 3:177–183. https://doi.org/10.1021/acsenergylett.7b01062

    Article  CAS  Google Scholar 

  27. Ming J, Liu A, Zhao J et al (2019) Hot π-electron tunneling of metal-insulator-COF nanostructures for efficient hydrogen production. Angew Chem 131:18458–18462. https://doi.org/10.1002/anie.201912344

    Article  CAS  Google Scholar 

  28. Han S, Huang T, Pan Y et al (2021) Tunable linear donor–π–acceptor conjugated polymers with a vinylene linkage for visible-light driven hydrogen evolution. Catal Sci Technol 11:4021–4025. https://doi.org/10.1039/D1CY00535A

    Article  CAS  Google Scholar 

  29. Zhao J, Xue L, Niu Z et al (2021) Conversion of CO2 to formic acid by integrated all-solar-driven artificial photosynthetic system. J Power Sources 512:230532. https://doi.org/10.1016/j.jpowsour.2021.230532

    Article  CAS  Google Scholar 

  30. Zhao J, Liu B, Meng L et al (2019) Plasmonic control of solar-driven CO2 conversion at the metal/ZnO interfaces. Aplpl Catal B: Environ 256:117823. https://doi.org/10.1016/j.apcatb.2019.117823

    Article  CAS  Google Scholar 

  31. Ge J, Yan Y (2017) Synthesis and characterization of photoelectrochemical and photovoltaic Cu2BaSnS4 thin films and solar cells. J Mater Chem C 5:6406–6419. https://doi.org/10.1039/c7tc01678f

    Article  CAS  Google Scholar 

  32. Khadka DB, Kim J (2014) Structural transition and band gap tuning of Cu2(Zn, Fe)SnS4 chalcogenide for photovoltaic application. J Phys Chem C 118:14227–14237. https://doi.org/10.1021/jp503678h

    Article  CAS  Google Scholar 

  33. Shin D, Saparov B, Zhu T et al (2016) BaCu2Sn(S, Se4): Earth-abundant chalcogenides for thin-film photovoltaics. Chem Mater 28:4771–4780. https://doi.org/10.1021/acs.chemmater.6b01832

    Article  CAS  Google Scholar 

  34. Zhu T, Huhn WP, Wessler GC et al (2017) I2-II-IV-VI4 (I = Cu, Ag; II = Sr, Ba; IV = Ge, Sn; VI = S, Se): Chalcogenides for thin-film photovoltaics. Chem Mater 29:7868–7879. https://doi.org/10.1021/acs.chemmater.7b02638

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Science and Engineering Research Board (SERB) of the Department of Science and Technology (DST) (Research Grant ECR/2015/000208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip K. Batabyal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 434 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhusudanan, S.P., Balamoorthy, E., M., S.K. et al. Alloyed Cu2Fe1-xBaxSnS4 for photoelectrochemical applications: band gap tailoring and structural transition. J Solid State Electrochem 26, 2411–2421 (2022). https://doi.org/10.1007/s10008-022-05243-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05243-6

Keywords

Navigation