Skip to main content

Mechanisms of electrochemical nitrogen gas reduction to ammonia under ambient conditions: a focused review

Abstract

Electrocatalytic nitrogen reduction reaction (E-NRR) to ammonia is becoming a major topic of interest in the field of large-scale energy storage from renewable sources and water. This approach is considered as an alternative route of ammonia production that could replace the high energy demanding and polluting Haber–Bosch process or high pressure stored hydrogen from electrolysis. This focused review covers different recent aspects of ammonia production via E-NRR electrocatalysis, including the challenges of E-NRR, reaction mechanisms, different materials of E-NRR catalysts such as noble metal-based, non-noble transition metal-based oxides, nitrides, carbides, and hetero-atom-based catalysts, emphasizing bifunctional catalysts reacting at ambient pressures and temperatures, which were not included in previous reviews. In addition, we discuss important issues concerning the commonly used experimental setup, testing protocols, and various NH3 quantification methods. The various fundamental and applied research methodologies summarized in this review can serve to promote efficient research on electrocatalytic nitrogen reduction and ammonia production, making it a promising future energy storage as a synthetic alternative fuel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599. https://doi.org/10.1021/cr900354u

    CAS  Article  PubMed  Google Scholar 

  2. Panda R, Maity M (2021) Global warming and climate change on earth: duties and challenges of human beings. Int J Res Eng Sci Manag 4:122–125

    Google Scholar 

  3. Li Y, Wang H, Priest C et al (2021) Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv Mater 33:2000381. https://doi.org/10.1002/adma.202000381

  4. Qing G, Ghazfar R, Jackowski ST et al (2020) Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem Rev 120:5437–5516. https://doi.org/10.1021/acs.chemrev.9b00659

    CAS  Article  PubMed  Google Scholar 

  5. Li W, Fang W, Wu C et al (2020) Bimetal–MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction. J Mater Chem A 8:3658–3666. https://doi.org/10.1039/C9TA13473E

    CAS  Article  Google Scholar 

  6. He Y, Tan Q, Lu L et al (2019) Metal-nitrogen-carbon catalysts for oxygen reduction in PEM fuel cells: self-template synthesis approach to enhancing catalytic activity and stability. Electrochem Energy Rev 2:231–251. https://doi.org/10.1007/s41918-019-00031-9

    CAS  Article  Google Scholar 

  7. Manjunatha R, Karajić A, Liu M et al (2020) A review of composite/hybrid electrocatalysts and photocatalysts for nitrogen reduction reactions: advanced materials, mechanisms, challenges and perspectives. Electrochem Energy Rev 3:506–540. https://doi.org/10.1007/s41918-020-00069-0

    CAS  Article  Google Scholar 

  8. Ghavam S, Vahdati M, Wilson IAG, Styring P (2021) Sustainable ammonia production processes. Front Energy Res 9

  9. Hanada N, Hino S, Ichikawa T et al (2010) Hydrogen generation by electrolysis of liquid ammonia. Chem Commun 46:7775–7777. https://doi.org/10.1039/C0CC01982H

    CAS  Article  Google Scholar 

  10. Erisman JW, Sutton MA, Galloway J et al (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639. https://doi.org/10.1038/ngeo325

    CAS  Article  Google Scholar 

  11. Amar IA, Lan R, Petit CTG, Tao S (2011) Solid-state electrochemical synthesis of ammonia: a review. J Solid State Electrochem 15:1845. https://doi.org/10.1007/s10008-011-1376-x

    CAS  Article  Google Scholar 

  12. Smil V (2000) Enriching the Earth: Fritz Haber, Carl Bosch, and the transformation of world food production

  13. Dunikowska M, Turko L (2011) Fritz Haber: the damned scientist. Angew Chemie Int Ed 50:10050–10062. https://doi.org/10.1002/anie.201105425

  14. Brightling J (2018) Ammonia and the fertiliser industry: the development of ammonia at Billingham. Johnson Matthey Technol Rev 62:32–47. https://doi.org/10.1595/205651318X696341

    CAS  Article  Google Scholar 

  15. Montoya JH, Tsai C, Vojvodic A, Nørskov JK (2015) The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. Chem Sus Chem 8:2180–2186. https://doi.org/10.1002/cssc.201500322

  16. Lipman T, Shah N (2007) Ammonia as an alternative energy storage medium for hydrogen fuel cells. Escholarsh Repos Univ Calif

  17. Foster SL, Bakovic SIP, Duda RD et al (2018) Catalysts for nitrogen reduction to ammonia. Nat Catal 1:490–500. https://doi.org/10.1038/s41929-018-0092-7

    Article  Google Scholar 

  18. Martín AJ, Shinagawa T, Pérez-Ramírez J (2019) Electrocatalytic reduction of nitrogen: from Haber-Bosch to ammonia artificial leaf. Chem 5:263–283. https://doi.org/10.1016/j.chempr.2018.10.010

  19. Kyriakou V, Garagounis I, Vourros A et al (2020) An electrochemical Haber-Bosch process. Joule 4:142–158. https://doi.org/10.1016/j.joule.2019.10.006

  20. Bertilsson GOB, Kirchmann H (2021) Sustainable N fertilizer production based on a loop: straw-biogas-‘Haber-Bosch’ process. Agric Syst 190:103100. https://doi.org/10.1016/j.agsy.2021.103100

  21. Xu G-R, Batmunkh M, Donne S et al (2019) Ruthenium(iii) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading. J Mater Chem A 7:25433–25440. https://doi.org/10.1039/C9TA10267A

    CAS  Article  Google Scholar 

  22. Liu H, Wei L, Liu F et al (2019) Homogeneous, heterogeneous, and biological catalysts for electrochemical N2 reduction toward NH3 under ambient conditions. ACS Catal 9:5245–5267. https://doi.org/10.1021/acscatal.9b00994

    CAS  Article  Google Scholar 

  23. Li M, Huang H, Low J et al (2019) Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small Methods 3:1800388. https://doi.org/10.1002/smtd.201800388

  24. Cui X, Tang C, Zhang Q (2018) A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv Energy Mater 8:1800369. https://doi.org/10.1002/aenm.201800369

  25. Lv C, Yan C, Chen G et al (2018) An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew Chemie Int Ed 57:6073–6076. https://doi.org/10.1002/anie.201801538

  26. Chen G-F, Yuan Y, Jiang H et al (2020) Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat Energy 5:605–613. https://doi.org/10.1038/s41560-020-0654-1

    CAS  Article  Google Scholar 

  27. Li J, Zhan G, Yang J et al (2020) Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J Am Chem Soc 142:7036–7046. https://doi.org/10.1021/jacs.0c00418

    CAS  Article  PubMed  Google Scholar 

  28. Zhang G, Sewell CD, Zhang P et al (2020) Nanostructured photocatalysts for nitrogen fixation. Nano Energy 71:104645. https://doi.org/10.1016/j.nanoen.2020.104645

  29. Rouwenhorst KHR, Engelmann Y, van‘t Veer K et al (2020) Plasma-driven catalysis: green ammonia synthesis with intermittent electricity. Green Chem 22:6258–6287. https://doi.org/10.1039/D0GC02058C

    CAS  Article  Google Scholar 

  30. Burris RH, Roberts GP (1993) Biological nitrogen fixation. Annu Rev Nutr 13:317–335. https://doi.org/10.1146/annurev.nu.13.070193.001533

    CAS  Article  PubMed  Google Scholar 

  31. Chen X, Guo Y, Du X et al (2020) Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv Energy Mater 10:1903172. https://doi.org/10.1002/aenm.201903172

  32. Huang H, Gong F, Wang Y et al (2019) Mn3O4 nanoparticles@reduced graphene oxide composite: an efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions. Nano Res 12:1093–1098. https://doi.org/10.1007/s12274-019-2352-5

    CAS  Article  Google Scholar 

  33. Singh AR, Rohr BA, Schwalbe JA et al (2017) Electrochemical ammonia synthesis—the selectivity challenge. ACS Catal 7:706–709. https://doi.org/10.1021/acscatal.6b03035

    CAS  Article  Google Scholar 

  34. Wang P, Chang F, Gao W et al (2017) Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat Chem 9:64–70. https://doi.org/10.1038/nchem.2595

    CAS  Article  PubMed  Google Scholar 

  35. Juangsa FB, Irhamna AR, Aziz M (2021) Production of ammonia as potential hydrogen carrier: review on thermochemical and electrochemical processes. Int J Hydrogen Energy 46:14455–14477. https://doi.org/10.1016/j.ijhydene.2021.01.214

  36. Kordali V, Kyriacou G, Lambrou C (2000) Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem Commun. https://doi.org/10.1039/B004885M

    Article  Google Scholar 

  37. Jia H-P, Quadrelli EA (2014) Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem Soc Rev 43:547–564. https://doi.org/10.1039/C3CS60206K

    CAS  Article  PubMed  Google Scholar 

  38. van der Ham CJM, Koper MTM, Hetterscheid DGH (2014) Challenges in reduction of dinitrogen by proton and electron transfer. Chem Soc Rev 43:5183–5191. https://doi.org/10.1039/C4CS00085D

    Article  PubMed  Google Scholar 

  39. Wang H, Chen Y, Fan R et al (2019) Selective electrochemical reduction of nitrogen to ammonia by adjusting the three-phase interface. Research 2019:1401209. https://doi.org/10.34133/2019/1401209

  40. Hou J, Yang M, Zhang J (2020) Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale 12:6900–6920. https://doi.org/10.1039/D0NR00412J

    CAS  Article  PubMed  Google Scholar 

  41. Skúlason E, Bligaard T, Gudmundsdóttir S et al (2012) A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys Chem Chem Phys 14:1235–1245. https://doi.org/10.1039/C1CP22271F

    Article  PubMed  Google Scholar 

  42. Chen G-F, Cao X, Wu S et al (2017) Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J Am Chem Soc 139:9771–9774. https://doi.org/10.1021/jacs.7b04393

    CAS  Article  PubMed  Google Scholar 

  43. Chen JG, Crooks RM, Seefeldt LC et al (2018) Beyond fossil fuel–driven nitrogen transformations. Science (80-) 360:eaar6611. https://doi.org/10.1126/science.aar6611

  44. Tang C, Qiao S-Z (2019) How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem Soc Rev 48:3166–3180. https://doi.org/10.1039/C9CS00280D

    CAS  Article  PubMed  Google Scholar 

  45. Bezdek MJ, Chirik PJ (2018) Interconversion of molybdenum imido and amido complexes by proton-coupled electron transfer. Angew Chemie Int Ed 57:2224–2228. https://doi.org/10.1002/anie.201708406

  46. Lv C, Zhong L, Yao Y et al (2020) Boosting electrocatalytic ammonia production through mimicking “π back-donation.” Chem 6:2690–2702. https://doi.org/10.1016/j.chempr.2020.07.006

  47. Jiao Y, Zheng Y, Davey K, Qiao S-Z (2016) Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat Energy 1:16130. https://doi.org/10.1038/nenergy.2016.130

    CAS  Article  Google Scholar 

  48. Guo C, Ran J, Vasileff A, Qiao S-Z (2018) Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ Sci 11:45–56. https://doi.org/10.1039/C7EE02220D

    CAS  Article  Google Scholar 

  49. Giddey S, Badwal SPS, Kulkarni A (2013) Review of electrochemical ammonia production technologies and materials. Int J Hydrogen Energy 38:14576–14594. https://doi.org/10.1016/j.ijhydene.2013.09.054

  50. Shilov AE (2003) Catalytic reduction of molecular nitrogen in solutions. Russ Chem Bull 52:2555–2562. https://doi.org/10.1023/B:RUCB.0000019873.81002.60

    CAS  Article  Google Scholar 

  51. Bazhenova TA, Shilov AE (1995) Nitrogen fixation in solution. Coord Chem Rev 144:69–145. https://doi.org/10.1016/0010-8545(95)01139-G

  52. Liu D, Chen M, Du X et al (2021) Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv Funct Mater 31:2008983. https://doi.org/10.1002/adfm.202008983

  53. Deng J, Iñiguez JA, Liu C (2018) Electrocatalytic nitrogen reduction at low temperature. Joule 2:846–856. https://doi.org/10.1016/j.joule.2018.04.014

  54. John J, Lee D-K, Sim U (2019) Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions. Nano Converg 6:15. https://doi.org/10.1186/s40580-019-0182-5

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chanda D, Xing R, Xu T et al (2021) Electrochemical nitrogen reduction: recent progress and prospects. Chem Commun 57:7335–7349. https://doi.org/10.1039/D1CC01451J

    CAS  Article  Google Scholar 

  56. MacLeod KC, Holland PL (2013) Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat Chem 5:559–565. https://doi.org/10.1038/nchem.1620

    CAS  Article  PubMed  Google Scholar 

  57. Zeinalipour-Yazdi CD, Hargreaves JSJ, Catlow CRA (2015) Nitrogen activation in a Mars–van Krevelen mechanism for ammonia synthesis on Co3Mo3N. J Phys Chem C 119:28368–28376. https://doi.org/10.1021/acs.jpcc.5b06811

    CAS  Article  Google Scholar 

  58. Anderson JS, Cutsail GE, Rittle J et al (2015) Characterization of an Fe≡N–NH2 intermediate relevant to catalytic N2 reduction to NH3. J Am Chem Soc 137:7803–7809. https://doi.org/10.1021/jacs.5b03432

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Abghoui Y, Skúlason E (2017) Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catal Today 286:69–77. https://doi.org/10.1016/j.cattod.2016.11.047

  60. Göttle AJ, Koper MTM (2017) Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT. Chem Sci 8:458–465. https://doi.org/10.1039/C6SC02984A

    CAS  Article  PubMed  Google Scholar 

  61. Zhao X, Hu G, Chen G-F et al (2021) Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv Mater 33:2007650. https://doi.org/10.1002/adma.202007650

  62. Kumar CVS, Subramanian V (2017) Can boron antisites of BNNTs be an efficient metal-free catalyst for nitrogen fixation? A DFT investigation. Phys Chem Chem Phys 19:15377–15387. https://doi.org/10.1039/C7CP02220D

    CAS  Article  PubMed  Google Scholar 

  63. Song R, Yang J, Wang M et al (2021) Theoretical study on P-coordinated metal atoms embedded in arsenene for the conversion of nitrogen to ammonia. ACS Omega 6:8662–8671. https://doi.org/10.1021/acsomega.1c00581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Luo H, Wang X, Wan C et al (2022) A theoretical study of Fe adsorbed on pure and nonmetal (N, F, P, S, Cl)-doped Ti3C2O2 for electrocatalytic nitrogen reduction. Nanomater 12

  65. Jiao L, Guo L (2022) Theoretical study on the efficient electrocatalytic N2 reduction reaction of bimetallic single atom embedded in phthalocyanine. SSRN Electron J. https://doi.org/10.2139/ssrn.4055255

    Article  Google Scholar 

  66. Höskuldsson ÁB, Abghoui Y, Gunnarsdóttir AB, Skúlason E (2017) Computational screening of rutile oxides for electrochemical ammonia formation. ACS Sustain Chem Eng 5:10327–10333. https://doi.org/10.1021/acssuschemeng.7b02379

    CAS  Article  Google Scholar 

  67. Abghoui Y, Skúlason E (2017) Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III–VII transition metal mononitrides. Catal Today 286:78–84. https://doi.org/10.1016/j.cattod.2016.06.009

  68. Li Q, Liu C, Qiu S et al (2019) Exploration of iron borides as electrochemical catalysts for the nitrogen reduction reaction. J Mater Chem A 7:21507–21513. https://doi.org/10.1039/C9TA04650J

    CAS  Article  Google Scholar 

  69. Jasin Arachchige L, Xu Y, Dai Z et al (2020) Theoretical investigation of single and double transition metals anchored on graphyne monolayer for nitrogen reduction reaction. J Phys Chem C 124:15295–15301. https://doi.org/10.1021/acs.jpcc.0c03899

    CAS  Article  Google Scholar 

  70. Xu Y, Cai Z, Du P et al (2021) Taming the challenges of activity and selectivity in the electrochemical nitrogen reduction reaction using graphdiyne-supported double-atom catalysts. J Mater Chem A 9:8489–8500. https://doi.org/10.1039/D1TA00262G

    Article  Google Scholar 

  71. Zhai X, Li L, Liu X et al (2020) A DFT screening of single transition atoms supported on MoS2 as highly efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale 12:10035–10043. https://doi.org/10.1039/D0NR00030B

    CAS  Article  PubMed  Google Scholar 

  72. Li L, Wang X, Guo H et al (2019) Theoretical screening of single transition metal atoms embedded in MXene defects as superior electrocatalyst of nitrogen reduction reaction. Small Methods 3:1900337. https://doi.org/10.1002/smtd.201900337

  73. Lv X, Wei W, Huang B et al (2021) High-throughput screening of synergistic transition metal dual-atom catalysts for efficient nitrogen fixation. Nano Lett 21:1871–1878. https://doi.org/10.1021/acs.nanolett.0c05080

    CAS  Article  PubMed  Google Scholar 

  74. Kong X, Peng H-Q, Bu S et al (2020) Defect engineering of nanostructured electrocatalysts for enhancing nitrogen reduction. J Mater Chem A 8:7457–7473. https://doi.org/10.1039/D0TA01453B

    CAS  Article  Google Scholar 

  75. Zhao T, Tian Y, Yan L, Su Z (2022) Metal-free C5N2 doped with a boron atom as an efficient electrocatalyst for the nitrogen reduction reaction. New J Chem 46:2282–2289. https://doi.org/10.1039/D1NJ04909G

    CAS  Article  Google Scholar 

  76. Wang J, Chen S, Li Z et al (2020) Recent advances in electrochemical synthesis of ammonia through nitrogen reduction under ambient conditions. Chem Electro Chem 7:1067–1079. https://doi.org/10.1002/celc.201901967

  77. Hao R, Sun W, Liu Q et al (2020) Efficient electrochemical nitrogen fixation over isolated Pt sites. Small 16:2000015. https://doi.org/10.1002/smll.202000015

  78. Cao Y, Gao Y, Zhou H et al (2018) Highly efficient ammonia synthesis electrocatalyst: single Ru atom on naturally nanoporous carbon materials. Adv Theory Simulations 1:1800018. https://doi.org/10.1002/adts.201800018

  79. Lin B, Heng L, Fang B et al (2019) Ammonia synthesis activity of alumina-supported ruthenium catalyst enhanced by alumina phase transformation. ACS Catal 9:1635–1644. https://doi.org/10.1021/acscatal.8b03554

    CAS  Article  Google Scholar 

  80. Liu H-M, Han S-H, Zhao Y et al (2018) Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J Mater Chem A 6:3211–3217. https://doi.org/10.1039/C7TA10866D

    CAS  Article  Google Scholar 

  81. Bao D, Zhang Q, Meng F-L et al (2017) Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv Mater 29:1604799. https://doi.org/10.1002/adma.201604799

  82. Wang Z, Li Y, Yu H et al (2018) Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-like gold microstructures. Chem Sus Chem 11:3480–3485. https://doi.org/10.1002/cssc.201801444

  83. Shi M-M, Bao D, Li S-J et al (2018) Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv Energy Mater 8:1800124. https://doi.org/10.1002/aenm.201800124

  84. Nazemi M, Panikkanvalappil SR, El-Sayed MA (2018) Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 49:316–323. https://doi.org/10.1016/j.nanoen.2018.04.039

  85. Wang H, Yu H, Wang Z et al (2019) Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia. Small 15:1804769. https://doi.org/10.1002/smll.201804769

  86. Back S, Jung Y (2016) On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. Phys Chem Chem Phys 18:9161–9166. https://doi.org/10.1039/C5CP07363D

    CAS  Article  PubMed  Google Scholar 

  87. Wang D, Azofra LM, Harb M et al (2018) Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions. Chem Sus Chem 11:3416–3422. https://doi.org/10.1002/cssc.201801632

  88. Geng Z, Liu Y, Kong X et al (2018) Achieving a record-high yield rate of 120.9 for N2 electrochemical reduction over Ru single-atom catalysts. Adv Mater 30:1803498. https://doi.org/10.1002/adma.201803498

  89. Wang J, Yu L, Hu L et al (2018) Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat Commun 9:1795. https://doi.org/10.1038/s41467-018-04213-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Morales-Guio CG, Stern L-A, Hu X (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43:6555–6569. https://doi.org/10.1039/C3CS60468C

    CAS  Article  PubMed  Google Scholar 

  91. Qin G, Cui Q, Du A et al (2019) Transition metal diborides: a new type of high-performance electrocatalysts for nitrogen reduction. Chem Cat Chem 11:2624–2633. https://doi.org/10.1002/cctc.201900538

  92. Marc-André L, Guillaume B-C, Dewhurst RD et al (2018) Nitrogen fixation and reduction at boron. Science (80-) 359:896–900. https://doi.org/10.1126/science.aaq1684

  93. Rostamikia G, Maheshwari S, Janik MJ (2019) Elementary kinetics of nitrogen electroreduction to ammonia on late transition metals. Catal Sci Technol 9:174–181. https://doi.org/10.1039/C8CY01845F

    CAS  Article  Google Scholar 

  94. Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96:2983–3012. https://doi.org/10.1021/cr950055x

    CAS  Article  PubMed  Google Scholar 

  95. Eady RR (1996) Structure−function relationships of alternative nitrogenases. Chem Rev 96:3013–3030. https://doi.org/10.1021/cr950057h

    CAS  Article  PubMed  Google Scholar 

  96. Zhang L, Ji X, Ren X et al (2018) Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies. Adv Mater 30:1800191. https://doi.org/10.1002/adma.201800191

  97. Yang D, Chen T, Wang Z (2017) Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J Mater Chem A 5:18967–18971. https://doi.org/10.1039/C7TA06139K

    CAS  Article  Google Scholar 

  98. Zhou F, Azofra LM, Ali M et al (2017) Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ Sci 10:2516–2520. https://doi.org/10.1039/C7EE02716H

    CAS  Article  Google Scholar 

  99. Huang L, Wu J, Han P et al (2019) NbO2 electrocatalyst toward 32% Faradaic efficiency for N2 fixation. Small Methods 3:1800386. https://doi.org/10.1002/smtd.201800386

  100. Han J, Liu Z, Ma Y et al (2018) Ambient N2 fixation to NH3 at ambient conditions: using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy 52:264–270. https://doi.org/10.1016/j.nanoen.2018.07.045

  101. Kong J, Lim A, Yoon C et al (2017) Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst. ACS Sustain Chem Eng 5:10986–10995. https://doi.org/10.1021/acssuschemeng.7b02890

    CAS  Article  Google Scholar 

  102. Abghoui Y, Garden AL, Hlynsson VF et al (2015) Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys Chem Chem Phys 17:4909–4918. https://doi.org/10.1039/C4CP04838E

    CAS  Article  PubMed  Google Scholar 

  103. Zhang R, Zhang Y, Ren X et al (2018) High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array. ACS Sustain Chem Eng 6:9545–9549. https://doi.org/10.1021/acssuschemeng.8b01261

    CAS  Article  Google Scholar 

  104. Li Q, He L, Sun C, Zhang X (2017) Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction. J Phys Chem C 121:27563–27568. https://doi.org/10.1021/acs.jpcc.7b10522

    CAS  Article  Google Scholar 

  105. Manjunatha R, Karajić A, Teller H et al (2020) Electrochemical and chemical instability of vanadium nitride in the synthesis of ammonia directly from nitrogen. Chem Cat Chem 12:438–443. https://doi.org/10.1002/cctc.201901558

  106. Zhang L-H, Yu F, Shiju NR (2021) Carbon-based catalysts for selective electrochemical nitrogen-to-ammonia conversion. ACS Sustain Chem Eng 9:7687–7703. https://doi.org/10.1021/acssuschemeng.1c00575

    CAS  Article  Google Scholar 

  107. Li W, Wu T, Zhang S et al (2018) Nitrogen-free commercial carbon cloth with rich defects for electrocatalytic ammonia synthesis under ambient conditions. Chem Commun 54:11188–11191. https://doi.org/10.1039/C8CC06000B

    CAS  Article  Google Scholar 

  108. Lv C, Qian Y, Yan C et al (2018) Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew Chemie Int Ed 57:10246–10250. https://doi.org/10.1002/anie.201806386

  109. Hu C, Dai L (2017) Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv Mater 29:1604942. https://doi.org/10.1002/adma.201604942

  110. Lv J, Wu S, Tian Z et al (2019) Construction of PdO–Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction. J Mater Chem A 7:12627–12634. https://doi.org/10.1039/C9TA02045D

    CAS  Article  Google Scholar 

  111. Manjunatha R, Karajić A, Goldstein V, Schechter A (2019) Electrochemical ammonia generation directly from nitrogen and air using an iron-oxide/titania-based catalyst at ambient conditions. ACS Appl Mater Interfaces 11:7981–7989. https://doi.org/10.1021/acsami.8b20692

    CAS  Article  PubMed  Google Scholar 

  112. Wang J, Nan H, Tian Y, Chu K (2020) FeMo3S4 for efficient nitrogen reduction reaction. ACS Sustain Chem Eng 8:12733–12740. https://doi.org/10.1021/acssuschemeng.0c04091

    CAS  Article  Google Scholar 

  113. Manjunatha R, Schechter A (2018) Electrochemical synthesis of ammonia using ruthenium–platinum alloy at ambient pressure and low temperature. Electrochem Commun 90:96–100. https://doi.org/10.1016/j.elecom.2018.04.008

  114. Zhao X, Yang Z, Kuklin AV et al (2020) Potassium ions promote electrochemical nitrogen reduction on nano-Au catalysts triggered by bifunctional boron supramolecular assembly. J Mater Chem A 8:13086–13094. https://doi.org/10.1039/D0TA04580B

    CAS  Article  Google Scholar 

  115. Liu P-Y, Shi K, Chen W-Z et al (2021) Enhanced electrocatalytic nitrogen reduction reaction performance by interfacial engineering of MOF-based sulfides FeNi2S4/NiS hetero-interface. Appl Catal B Environ 287:119956. https://doi.org/10.1016/j.apcatb.2021.119956

  116. Sim HYF, Chen JRT, Koh CSL et al (2020) ZIF-induced d-band modification in a bimetallic nanocatalyst: achieving over 44 % efficiency in the ambient nitrogen reduction reaction. Angew Chemie Int Ed 59:16997–17003. https://doi.org/10.1002/anie.202006071

  117. Xiao L, Zhu S, Liang Y et al (2021) Effects of hydrophobic layer on selective electrochemical nitrogen fixation of self-supporting nanoporous Mo4P3 catalyst under ambient conditions. Appl Catal B Environ 286:119895. https://doi.org/10.1016/j.apcatb.2021.119895

  118. Zhang J, Zhao B, Liang W et al (2020) Three-phase electrolysis by gold nanoparticle on hydrophobic interface for enhanced electrochemical nitrogen reduction reaction. Adv Sci 7:2002630. https://doi.org/10.1002/advs.202002630

  119. Lai F, Zong W, He G et al (2020) N2 Electroreduction to NH3 by selenium vacancy-rich ReSe2 catalysis at an abrupt interface. Angew Chemie Int Ed 59:13320–13327. https://doi.org/10.1002/anie.202003129

  120. Koh CSL, Lee HK, Fan Sim HY et al (2020) Turning water from a hindrance to the promotor of preferential electrochemical nitrogen reduction. Chem Mater 32:1674–1683. https://doi.org/10.1021/acs.chemmater.9b05313

    CAS  Article  Google Scholar 

  121. Duan J, Shao D, He X et al (2021) Model MoS2@ZIF-71 interface acts as a highly active and selective electrocatalyst for catalyzing ammonia synthesis. Colloids Surfaces A Physicochem Eng Asp 619:126529. https://doi.org/10.1016/j.colsurfa.2021.126529

  122. Ren Y, Yu C, Tan X et al (2021) Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives. Energy Environ Sci 14:1176–1193. https://doi.org/10.1039/D0EE03596C

    CAS  Article  Google Scholar 

  123. Kyriakou V, Garagounis I, Vasileiou E et al (2017) Progress in the electrochemical synthesis of ammonia. Catal Today 286:2–13. https://doi.org/10.1016/j.cattod.2016.06.014

  124. Garagounis I, Kyriakou V, Skodra A et al (2014) Electrochemical synthesis of ammonia in solid electrolyte cells. Front Energy Res 2

  125. Xu G, Liu R, Wang J (2009) Electrochemical synthesis of ammonia using a cell with a Nafion membrane and SmFe0.7Cu0.3−xNixO3 (x = 0–0.3) cathode at atmospheric pressure and lower temperature. Sci China Ser B Chem 52:1171–1175. https://doi.org/10.1007/s11426-009-0135-7

    CAS  Article  Google Scholar 

  126. Chen S, Perathoner S, Ampelli C et al (2017) Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew Chemie Int Ed 56:2699–2703. https://doi.org/10.1002/anie.201609533

  127. Zheng B, Xu H, Guo L et al (2020) Genomic and phenotypic diversity of carbapenemase-producing Enterobacteriaceae isolates from bacteremia in china: a multicenter epidemiological, microbiological, and genetic study. Engineering. https://doi.org/10.1016/j.eng.2020.10.015

  128. Kim K, Yoo C-Y, Kim J-N et al (2016) Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure. J Electrochem Soc 163:F1523–F1526. https://doi.org/10.1149/2.0741614jes

    CAS  Article  Google Scholar 

  129. Kim K, Lee N, Yoo C-Y et al (2016) Communication—electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. J Electrochem Soc 163:F610–F612. https://doi.org/10.1149/2.0231607jes

    CAS  Article  Google Scholar 

  130. Kugler K, Luhn M, Schramm JA et al (2015) Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis. Phys Chem Chem Phys 17:3768–3782. https://doi.org/10.1039/C4CP05501B

    CAS  Article  PubMed  Google Scholar 

  131. Durst J, Rudnev A, Dutta A et al (2015) Electrochemical CO2 reduction – a critical view on fundamentals, materials and applications. Chimia (Aarau) 69:769. https://doi.org/10.2533/chimia.2015.769

    CAS  Article  Google Scholar 

  132. Zhao Y, Shi R, Bian X et al (2019) Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates? Adv Sci 6:1802109. https://doi.org/10.1002/advs.201802109

  133. LeDuy A, Samson R (1982) Testing of an ammonia ion selective electrode for ammonia nitrogen measurement in the methanogenic sludge. Biotechnol Lett 4:303–306. https://doi.org/10.1007/BF00132830

    CAS  Article  Google Scholar 

  134. Thomas DH, Rey M, Jackson PE (2002) Determination of inorganic cations and ammonium in environmental waters by ion chromatography with a high-capacity cation-exchange column. J Chromatogr A 956:181–186. https://doi.org/10.1016/S0021-9673(02)00141-3

  135. Yu W, Lewis NS, Gray HB, Dalleska NF (2020) Isotopically selective quantification by UPLC-MS of aqueous ammonia at submicromolar concentrations using dansyl chloride derivatization. ACS Energy Lett 5:1532–1536. https://doi.org/10.1021/acsenergylett.0c00496

    CAS  Article  Google Scholar 

  136. Nielander AC, McEnaney JM, Schwalbe JA et al (2019) A versatile method for ammonia detection in a range of relevant electrolytes via direct nuclear magnetic resonance techniques. ACS Catal 9:5797–5802. https://doi.org/10.1021/acscatal.9b00358

    CAS  Article  Google Scholar 

  137. Yan D, Li H, Chen C et al (2019) Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods 3:1800331. https://doi.org/10.1002/smtd.201800331

  138. Greenlee LF, Renner JN, Foster SL (2018) The use of controls for consistent and accurate measurements of electrocatalytic ammonia synthesis from dinitrogen. ACS Catal 8:7820–7827. https://doi.org/10.1021/acscatal.8b02120

    CAS  Article  Google Scholar 

  139. Minteer SD, Christopher P, Linic S (2019) Recent developments in nitrogen reduction catalysts: a virtual issue. ACS Energy Lett 4:163–166. https://doi.org/10.1021/acsenergylett.8b02197

    CAS  Article  Google Scholar 

  140. Bolleter WT, Bushman CJ, Tidwell PW (1961) Spectrophotometric determination of ammonia as indophenol. Anal Chem 33:592–594. https://doi.org/10.1021/ac60172a034

    CAS  Article  Google Scholar 

  141. Giner-Sanz JJ, Leverick GM, Pérez-Herranz V, Shao-Horn Y (2020) Salicylate method for ammonia quantification in nitrogen electroreduction experiments: the correction of iron III interference. J Electrochem Soc 167:134519. https://doi.org/10.1149/1945-7111/abbdd6

    CAS  Article  Google Scholar 

  142. Hu L, Khaniya A, Wang J et al (2018) Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal 8:9312–9319. https://doi.org/10.1021/acscatal.8b02585

    CAS  Article  Google Scholar 

  143. (2006) Determination of nitrogen species (nitrate, nitrite and ammonia ions) in environmental samples by ion chromatography. Polish J Environ Stud 15:5–18

  144. Andersen SZ, Čolić V, Yang S et al (2019) A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570:504–508. https://doi.org/10.1038/s41586-019-1260-x

    CAS  Article  PubMed  Google Scholar 

  145. Liu H, Guijarro N, Luo J (2021) The pitfalls in electrocatalytic nitrogen reduction for ammonia synthesis. J Energy Chem 61:149–154. https://doi.org/10.1016/j.jechem.2021.01.039

  146. Han L, Ren Z, Ou P et al (2021) Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew Chemie Int Ed 60:345–350. https://doi.org/10.1002/anie.202010159

  147. Ilyas T, Raziq F, Ilyas N et al (2022) FeNi@CNS nanocomposite as an efficient electrochemical catalyst for N2-to-NH3 conversion under ambient conditions. J Mater Sci Technol 103:59–66. https://doi.org/10.1016/j.jmst.2021.05.083

  148. Chen X, Ma C, Tan Z et al (2022) One-dimensional screw-like MoS2 with oxygen partially replacing sulfur as an electrocatalyst for the N2 reduction reaction. Chem Eng J 433:134504. https://doi.org/10.1016/j.cej.2022.134504

  149. Johnson D, Hunter B, Christie J et al (2022) Ti2N nitride MXene evokes the Mars-van Krevelen mechanism to achieve high selectivity for nitrogen reduction reaction. Sci Rep 12:657. https://doi.org/10.1038/s41598-021-04640-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. Zhao R, Wang G, Mao Y et al (2022) Li-intercalation boosted oxygen vacancies enable efficient electrochemical nitrogen reduction on ultrathin TiO2 nanosheets. Chem Eng J 430:133085. https://doi.org/10.1016/j.cej.2021.133085

  151. Chang B, Li L, Shi D et al (2021) Metal-free boron carbonitride with tunable boron Lewis acid sites for enhanced nitrogen electroreduction to ammonia. Appl Catal B Environ 283:119622. https://doi.org/10.1016/j.apcatb.2020.119622

  152. Zhang M, Choi C, Huo R et al (2020) Reduced graphene oxides with engineered defects enable efficient electrochemical reduction of dinitrogen to ammonia in wide pH range. Nano Energy 68:104323. https://doi.org/10.1016/j.nanoen.2019.104323

  153. Li Y, Ma L, Fu Y et al (2022) Sulfurization enhancement of FeMoO4 for electrochemical ammonia synthesis with high Faradaic efficiency in neutral media. J Electroanal Chem 905:115981. https://doi.org/10.1016/j.jelechem.2021.115981

  154. Li T, Xia J, Xian H et al (2022) Fe(III) grafted MoO3 nanorods for effective electrocatalytic fixation of atmospheric N2 to NH3. Int J Hydrogen Energy 47:3550–3555. https://doi.org/10.1016/j.ijhydene.2021.10.263

  155. Qu Y, Dai T, Cui Y et al (2022) Tailoring electronic structure of copper nanosheets by silver doping toward highly efficient electrochemical reduction of nitrogen to ammonia. Chem Eng J 433:133752. https://doi.org/10.1016/j.cej.2021.133752

  156. Tran NQ, Liu X, Cho Y et al (2022) Efficient ambient ammonia synthesis by Lewis acid pair over cobalt single atom catalyst with suppressed proton reduction. J Mater Chem A 10:8432–8439. https://doi.org/10.1039/D2TA00308B

    CAS  Article  Google Scholar 

  157. Han M, Guo M, Yun Y et al (2022) Effect of heteroatom and charge reconstruction in atomically precise metal nanoclusters on electrochemical synthesis of ammonia. Adv Funct Mater 2202820. https://doi.org/10.1002/adfm.202202820

  158. Zhang C, Wang Z, Lei J et al (2022) Atomic molybdenum for synthesis of ammonia with 50% Faradic efficiency. Small 18:e2106327. https://doi.org/10.1002/smll.202106327

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Schechter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

To Prof. Doron Aurbach, for years of mentoring generations of scientists in academia, industry, and worldwide. Acknowledgment of your outstanding breakthrough contributions in a wide range of electrochemistry, batteries, and material chemistry studies and for many years of friendship.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaiprathu, A., Velayudham, P., Teller, H. et al. Mechanisms of electrochemical nitrogen gas reduction to ammonia under ambient conditions: a focused review. J Solid State Electrochem (2022). https://doi.org/10.1007/s10008-022-05228-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-022-05228-5

Keywords

  • Energy conversion
  • Bifunctional catalysts
  • Nitrogen reduction reaction
  • Electrocatalyst