Skip to main content
Log in

Ion motion and charge transfer through a solid-electrolyte interphase: an atomistic view

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Solid-electrolyte interphase (SEI) films forming at the surface of anode electrodes are known as one of the crucial aspects that decide battery performance in most advanced battery technologies. For these films to be effective, ion transport and electron transport need to have specific properties. However, due to the difficulties accessing the dynamic character of SEI formation and evolution, little is known about these properties. Moreover, special multimodal techniques are needed to characterize the in situ behavior. Developing and designing these multimodal techniques with acceptable levels of control and reproducibility is a challenge. Here, using theory and computation, we focus on specific aspects of ion motion and charge transfer through a 1-nm-thick Li2S crystalline SEI obtaining important new insights regarding ion transport through nascent SEIs. Our study reveals that spontaneous ion hopping is the dominant mechanism for the motion of Li ions through a thin Li2S SEI located on top of Li metal. Simultaneously, charge transfer driven by the formation of a new Li2S layer due to reduction of a Li2S8 molecule from the electrolyte phase acts as a trigger of the ion transport process. Fluctuating charge transfer evolution appears as an exchange between pairs of metal layers, with maximum amplitudes observed at interfacial charge transfer through the Li metal/SEI interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin Z, Liang C (2015) Lithium–sulfur batteries: from liquid to solid cells. J Mater Chem 3:936–958

    Article  CAS  Google Scholar 

  2. Liu J, Bao Z, Cui Y, Dufek EJ, Goodenough JB, Khalifah P, Li Q, Liaw BY, Liu P, Manthiram A, Meng YS, Subramanian VR, Toney MF, Viswanathan VV, Whittingham MS, Xiao J, Xu W, Yang J, Yang X-Q, Zhang J-G (2019) Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy 4:180–186

    Article  CAS  Google Scholar 

  3. Ma L, Cui J, Yao S, Liu X, Luo Y, Shen X, Kim J-K (2020) Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater 27:522–554

    Article  Google Scholar 

  4. Lai J, Xing Y, Chen N, Li L, Wu F, Chen R (2020) Electrolytes for rechargeable lithium–air batteries. Angew Chem Int Ed 59:2974–2997

    Article  CAS  Google Scholar 

  5. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  6. Chung S-H, Manthiram A (2019) Current status and future prospects of metal–sulfur batteries. Adv Mater 31:1901125

    Article  CAS  Google Scholar 

  7. Yin Y-X, Xin S, Guo Y-G, Wan L-J (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52:13186–13200

    Article  CAS  Google Scholar 

  8. Xu G, Ding B, Pan J, Nie P, Shen L, Zhang X (2014) High performance lithium–sulfur batteries: advances and challenges. J Mater Chem A 2:12662–12676

    Article  CAS  Google Scholar 

  9. Chen L, Shaw LL (2014) Recent advances in lithium–sulfur batteries. J Power Sources 267:770–783

    Article  CAS  Google Scholar 

  10. Ma G, Wen Z, Wu M, Shen C, Wang Q, Jin J, Wu X (2014) A lithium anode protection guided highly-stable lithium–sulfur battery. Chem Commun 50:14209–14212

    Article  CAS  Google Scholar 

  11. Kumar R, Liu J, Hwang J-Y, Sun Y-K (2018) Recent research trends in Li–S batteries. J Mater Chem A 6:11582–11605

    Article  CAS  Google Scholar 

  12. Cheng X-B, Huang J-Q, Peng H-J, Nie J-Q, Liu X-Y, Zhang Q, Wei F (2014) Polysulfide shuttle control: towards a lithium-sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading. J Power Sources 253:263–268

    Article  CAS  Google Scholar 

  13. Hofmann AF, Fronczek DN, Bessler WG (2014) Mechanisticmodeling of polysulfide shuttle and capacity loss in lithium-sulfurbatteries. J Power Sources 259:300–310

  14. Barchasz C, Molton F, Duboc C, Leprêtre J-C, Patoux S, Alloin F (2012) Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal Chem 84:3973–3980

    Article  CAS  PubMed  Google Scholar 

  15. Barghamadi M, Kapoor A, Wen C (2013) A Review on Li-S Batteries as a high efficiency rechargeable lithium battery. J Electrochem Soc 160:A1256–A1263

    Article  CAS  Google Scholar 

  16. Wang W, Yue X, Meng J, Wang J, Wang X, Chen H, Shi D, Fu J, Zhou Y, Chen J, Fu Z (2019) Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater 18:414–422

    Article  Google Scholar 

  17. Cheng X-B, Zhang R, Zhao C-Z, Wei F, Zhang J-G, Zhang Q (2016) A review of solid electrolyte interphases on lithium metal anode. Adv Sci 3:1500213

    Article  PubMed  CAS  Google Scholar 

  18. Shan X, Zhong Y, Zhang L, Zhang Y, Xia X, Wang X, Tu J (2021) A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives. J Phys Chem C 125:19060–19080

    Article  CAS  Google Scholar 

  19. Wang J, Ge B, Li H, Yang M, Wang J, Liu D, Fernandez C, Chen X, Peng Q (2021) Challenges and progresses of lithium-metal batteries. Chem Eng J 420:129739

    Article  CAS  Google Scholar 

  20. Liu B, Zhang JG, Xu W (2018) Advancing lithium metal batteries. Joule 2:833–845

    Article  CAS  Google Scholar 

  21. Fang C, Wang X, Meng YS (2019) Key Issues hindering a practical lithium-metal anode. Trends Chem 1:152–158

    Article  CAS  Google Scholar 

  22. Chen X, Hou T, Persson KA, Zhang Q (2019) Combining theory and experiment in lithium–sulfur batteries: current progress and future perspectives. Mater Today 22:142–158

    Article  CAS  Google Scholar 

  23. Tripathi AM, Su W-N, Hwang BJ (2018) In situ analytical techniques for battery interface analysis. Chem Soc Rev 47:736–851

    Article  CAS  PubMed  Google Scholar 

  24. Shutthanandan V, Nandasiri M, Zheng J, Engelhard MH, Xu W, Thevuthasan S, Murugesan V (2019) Applications of XPS in the characterization of battery materials. J Electron Spectrosc Relat Phenom 231:2–10

    Article  CAS  Google Scholar 

  25. Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H, Dai H, Andrews JC, Cui Y, Toney MF (2012) In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J Am Chem Soc 134:6337–6343

    Article  CAS  PubMed  Google Scholar 

  26. Kamphaus EP, Angarita-Gomez S, Qin X, Shao M, Engelhard M, Mueller KT, Murugesan V, Balbuena PB (2019) Role of inorganic surface layer on solid electrolyte interphase evolution at Li-metal anodes ACS Appl Mater Interfaces 11:31467–31476

  27. Kamphaus EP, Gomez SA, Qin X, Shao M, Balbuena PBJC (2020) Effects of solid electrolyte interphase components on the reduction of LiFSI over lithium metal Chem Phys Chem 21:1310–1317

    CAS  Google Scholar 

  28. Kamphaus EP, Balbuena PB (2021) Polysulfide reduction and Li2S phase formation in the presence of lithium metal and solid electrolyte interphase layer. J Power Sources 485:229289

    Article  CAS  Google Scholar 

  29. Ospina Acevedo F, Guo N, Balbuena PB (2020) Lithium oxidation and electrolyte decomposition at Li-metal/liquid electrolyte interfaces. J Mater Chem A 8:17036–17055

    Article  CAS  Google Scholar 

  30. Angarita-Gomez S, Balbuena PB (2020) Insights into lithium ion deposition on lithium metal surfaces. Phys Chem Chem Phys 22:21369–21382

    Article  CAS  PubMed  Google Scholar 

  31. Angarita-Gomez S, Balbuena PB (2021) Solvation vs. surface charge transfer: an interfacial chemistry game drives cation motion. Chem Comm 57:6189–6192

  32. Shi SQ, Lu P, Liu ZY, Qi Y, Hector LG, Li H, Harris SJ (2012) Direct calculation of Li-ion transport in the solid electrolyte interphase. J Am Chem Soc 134:15476–15487

    Article  CAS  PubMed  Google Scholar 

  33. Benitez L, Seminario JM (2017) Ion diffusivity through the solid electrolyte interphase in lithium-ion batteries. J Electrochem Soc 164 E3159

  34. Kang D, Xiao M, Lemmon JP (2021) Artificial solid-electrolyte interphase for lithium metal batteries. Batteries Supercaps 4:445–455

    Article  CAS  Google Scholar 

  35. Fan L, Zhuang HL, Gao L, Lu Y, Archer LA (2017) Regulating Li deposition at artificial solid electrolyte interphases. J Mater Chem A 5:3483–3492

    Article  CAS  Google Scholar 

  36. Winter M (2009) The solid electrolyte interphase - the most important and the least understood solid electrolyte in rechargeable Li batteries. Z Phys Chem 223:1395–1406

    Article  CAS  Google Scholar 

  37. Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  38. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558

    Article  CAS  Google Scholar 

  39. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  40. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  41. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  43. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  44. Tang W, Sanville E, Henkelman G (2009) A grid-based Bader analysis algorithm without lattice bias. J Phys: Condens Matter 21:084204

    CAS  Google Scholar 

  45. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360

    Article  Google Scholar 

  46. Ciccotti G, Ferrario M (2004) Blue moon approach to rare events. Mol Simul 30:787–793

    Article  CAS  Google Scholar 

  47. Komeiji Y (2007) Implementation of the blue moon ensemble method. Chem-Bio Inf J 7:12–23

    Article  CAS  Google Scholar 

  48. Bucko T (2008) Ab initio calculations of free-energy reaction barriers. J Phys Condens Matter 20:064211

  49. Giannini M, Mastouri A, Demortière A, Dražić G, Davoisne C (2016) On the morphology of Li2S deposits in Li-S batteries. In European Microscopy Congress 2016: Proceedings pp 830–831

  50. Wood KN, Teeter G (2018) XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction. ACS Appl Energy Mater 1:4493–4504

    Article  CAS  Google Scholar 

  51. Yemini R, Noked M (2021) Effect of polysulfide species on lithium anode cycle life and reversibility in Li–S batteries. ACS Appl Energy Mater 4:4711–4718

    Article  CAS  Google Scholar 

  52. Eithiraj RD, Jaiganesh G, Kalpana G, Rajagopalan M (2007) First‐principles study of electronic structure and ground‐state properties of alkali‐metal sulfides – Li2S, Na2S, K2S and Rb2S. Phys Status Solidi B 244:1337–1346

  53. Zhang K, Wang L, Hu Z, Cheng F, Chen J (2014) Ultrasmall Li2S nanoparticles anchored in graphene nanosheets for high-energy lithium-ion batteries. Sci Rep 4:6467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy through the Advanced Battery Materials Research (BMR) Program (Battery500 Consortium phase 2) under DOE contract No. DE-AC05-76RL01830 from the Pacific Northwest National Laboratory (PNNL). Computational resources from the Texas A&M University High Performance Research Computing are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perla B. Balbuena.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

We dedicate this paper to Prof. Doron Aurbach, for his extraordinary contributions to the understanding of battery materials and devices.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angarita-Gomez, S., Balbuena, P.B. Ion motion and charge transfer through a solid-electrolyte interphase: an atomistic view. J Solid State Electrochem 26, 1931–1939 (2022). https://doi.org/10.1007/s10008-022-05227-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05227-6

Keywords

Navigation