Skip to main content
Log in

Reducing oxy-contaminations for enhanced Li-ion conductivity of halide-based solid electrolyte in water-mediated synthesis

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Liquid-mediated synthesis offers a new approach to producing or applying solid electrolytes (SEs) in all-solid-state Li-ion batteries (ASSLIB). Li-ion conductive Li3InCl6 (LIC) powders are synthesized using a water-mediated process in which hydrated precursor powders are dried at progressively increasing temperatures up to 200 °C. The effects of drying environments, including high-vacuum (HV; 10−3 Torr), low-vacuum (LV; 10−1 Torr), Ar, and N2 (both at 1 atm), on the chemical, microstructural, and ionic conductive properties of the LIC powders are investigated. Oxy-contaminations in the LIC powders are determined based on synchrotron X-ray diffraction and X-ray absorption analyses. The ionic conductivity of the produced LIC powder exhibits a profound reverse trend with the amounts of oxy contaminations, including crystal water residual and In-O oxy species, such as InOCl. The vacuum drying conditions favor the formation of smaller particles, which facilitate water removal due to a shorter diffusion length and a higher surface area, resulting in less oxy-contamination and higher ionic conductivities (HV: 2.70 mS cm−1; LV: 0.96 mS cm−1). The 1-atm drying conditions, either in Ar or N2, produce compact LIC chunks, which are unfavorable to water removal, and more oxy-contaminations, leading to nearly an order of magnitude lower conductivities (Ar: 0.39 mS cm−1; N2: 0.22 mS cm−1). The HV SE powder leads to the best electrochemical performance of a high-capacity Ni-rich Li(Ni,Mn,Co)O2│SE│InLi full-cell. The revealed processing-microstructure-property relationships may facilitate the synthesis of high-quality halide-based Li-ion SEs for ASSLIB applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46:7778–7781. https://doi.org/10.1002/anie.200701144

    Article  CAS  Google Scholar 

  2. Thokchom JS, Kumar B (2010) The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic. J Power Sources 195:2870–2876. https://doi.org/10.1016/j.jpowsour.2009.11.037

    Article  CAS  Google Scholar 

  3. Kataoka K, Akimoto J (2019) Lithium-ion conductivity and crystal structure of garnet-type solid electrolyte Li7− xLa3Zr2− xTaxO12 using single-crystal. J Ceram Soc Jpn 127:521–526. https://doi.org/10.2109/jcersj2.19022

    Article  CAS  Google Scholar 

  4. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K (2011) A lithium superionic conductor. Nat Mater 10:682–686. https://doi.org/10.1038/nmat3066

    Article  CAS  PubMed  Google Scholar 

  5. Rao RP, Adams S (2011) Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys Status Solidi A 208:1804–1807. https://doi.org/10.1002/pssa.201001117

    Article  CAS  Google Scholar 

  6. Li X, Liang J, Yang X, Adair KR, Wang C, Zhao F, Sun X (2020) Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ Sci 13:1429–1461. https://doi.org/10.1039/C9EE03828K

    Article  CAS  Google Scholar 

  7. Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S (2018) Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv Mater 30:1803075. https://doi.org/10.1002/adma.201803075

    Article  CAS  Google Scholar 

  8. Li X, Liang J, Chen N, Luo J, Adair KR, Wang C, Banis MN, Sham TK, Zhang L, Zhao S, Lu S, Huang H, Li R, Sun X (2019) Water-mediated synthesis of a superionic halide solid electrolyte. Angew Chem Int Ed 131:16579–16584. https://doi.org/10.1002/anie.201909805

    Article  CAS  Google Scholar 

  9. Li X, Liang J, Luo J, Banis MN, Wang C, Li W, Deng S, Yu C, Zhao F, Hu Y, Sham TK, Zhang L, Zhao S, Lu S, Huang H, Li R, Adair KR, Sun X (2019) Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ Sci 12:2665–2671. https://doi.org/10.1039/C9EE02311A

    Article  CAS  Google Scholar 

  10. Helm B, Schlem R, Wankmiller B, Banik A, Gautam A, Ruhl J, Li C, Hansen MR, Zeier WG (2021) Exploring aliovalent substitutions in the lithium halide superionic conductor Li3–x In1–xZrxCl6 (0≤ x≤ 0.5). Chem Mater 33:4773–4782. https://doi.org/10.1021/acs.chemmater.1c01348

    Article  CAS  Google Scholar 

  11. Zhang S, Zhao F, Wang S, Liang J, Wang J, Wang C, Zhang H, Adair K, Li W, Li M, Duan H, Zhao Y, Yu R, Li R, Huang H, Zhang L, Zhao S, Lu S, Sham TK, Mo Y, Sun X (2021) Advanced high-voltage all-solid-state li-ion batteries enabled by a dual-halogen solid electrolyte. Adv Energy Mater 11:2100836. https://doi.org/10.1002/aenm.202100836

    Article  CAS  Google Scholar 

  12. Li X, Liang J, Adair KR, Li J, Li W, Zhao F, Hu Y, Sham TK, Zhang L, Zhao S, Lu S, Huang H, Li R, Chen N, Sun X (2020) Origin of superionic Li3Y1–xInxCl6 halide solid electrolytes with high humidity tolerance. Nano Lett 20:4384–4392. https://doi.org/10.1021/acs.nanolett.0c01156

    Article  CAS  PubMed  Google Scholar 

  13. Han Y, Jung SH, Kwak H, Jun S, Kwak HH, Lee JH, Hong ST, Jung YS (2021) Single-or poly-crystalline Ni-rich layered cathode, sulfide or halide solid electrolyte: which will be the winners for all-solid-state batteries? Adv Energy Mater 11:2100126. https://doi.org/10.1002/aenm.202100126

    Article  CAS  Google Scholar 

  14. Zhang J, Zhong H, Zheng C, Xia Y, Liang C, Huang H, Gan Y, Tao X, Zhang W (2018) All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: effect of binder content. J Power Sources 391:73–79. https://doi.org/10.1016/j.jpowsour.2018.04.069

    Article  CAS  Google Scholar 

  15. Wang S, Xu X, Cui C, Zeng C, Liang J, Fu J, Zhang R, Zhai T, Li H (2022) Air sensitivity and degradation evolution of halide solid-state electrolytes upon exposure. Adv Funct Mater 32:2108805. https://doi.org/10.1002/adfm.202108805

    Article  CAS  Google Scholar 

  16. Sacci RL, Bennett TH, Drews AR, Anandan V, Kirkham MJ, Daemen LL, Nanda J (2021) Phase evolution during lithium–indium halide superionic conductor dehydration. J Mater Chem A 9:990–996. https://doi.org/10.1039/D0TA10012A

    Article  CAS  Google Scholar 

  17. Santhosha AL, Medenbach L, Buchheim JR, Adelhelm P (2019) The indium− lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batter Supercaps 2:524–529. https://doi.org/10.1002/batt.201800149

    Article  CAS  Google Scholar 

  18. Qiao R, Chuang YD, Yan S, Yang W (2012) Soft X-ray irradiation effects of Li2O2, Li2CO3 and Li2O revealed by absorption spectroscopy. PLoS ONE 7:e49182. https://doi.org/10.1371/journal.pone.0049182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petit T, Ren J, Choudhury S, Golnak R, Lalithambika SS, Tesch MF, Xiao J, Aziz EF (2017) X-ray absorption spectroscopy of TiO2 Nanoparticles in water using a holey membrane-based flow cell. Adv Mater Interfaces 4:1700755. https://doi.org/10.1002/admi.201700755

    Article  CAS  Google Scholar 

  20. Frati F, Hunault MOJY, de Groot FMF (2020) Oxygen K-edge X-ray absorption spectra. Chem Rev 120:4056–4110. https://doi.org/10.1021/acs.chemrev.9b00439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the “Advanced Research Center for Green Materials Science and Technology” from The Featured Area Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (110L9006) and the Ministry of Science and Technology in Taiwan (MOST 110-2634-F-002-043), and also of MOST-110-2221-E-002-015-MY3, 110-3116-F-011-003, and 110-2923-E-011-002. The authors also thank Ms. S. J. Ji and Ms. C. Y. Chien (MOST; NTU) for their assistance in performing electron microscopy analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nae-Lih Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HW., Lin, CC., Chang, PY. et al. Reducing oxy-contaminations for enhanced Li-ion conductivity of halide-based solid electrolyte in water-mediated synthesis. J Solid State Electrochem 26, 2089–2096 (2022). https://doi.org/10.1007/s10008-022-05213-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05213-y

Navigation