Skip to main content

Recent development in the field of ceramics solid-state electrolytes: I—oxide ceramic solid-state electrolytes

Abstract

Many elements in the periodic table form ionic compounds; the crystal lattices of such compounds contain cations and anions, which are arranged in the way that these cations and anions form two interpenetrated sub-lattices (cation and anion sub-lattices). Up to now, a number of ionic compounds are known, in which cations or anions are fairly mobile within the corresponding sub-lattice; these compounds are termed as “solid-state electrolytes”. Many solid-state electrolytes with such moveable cations and moveable anions are known to date. Following the footsteps of the established Li-ion battery technology, an interest in the Li+-conducting solid-state electrolytes appears, and all-solid-state lithium battery has started its journey to accompany the reigning counterpart. The valence and ionic radius of ions, the crystal structure, and intrinsic defects of the material are the prime properties of the solid-state electrolytes, which determine the ion mobility in the crystal framework. There are a number of solid-state electrolyte structures that demonstrate high Li+-mobility and high Li+ conductivity (Li+ superconductors) in the range of 10−2 to 10−3 S/cm at room temperature, which is comparable to the ionic conductivity of 1 M LiPF6 (~ 10−2 S/cm), but the conductivity can dwindle highly by up to 5–6 orders of magnitude within the different materials that belonged to the same crystal structure family. Moreover, the surface or interface properties are also crucial factors in tailoring the ionic conductivity of practical polycrystalline solid electrolytes. The interfacial properties and compatibility with electrode materials have a high impact on the performance of electrochemical cells with solid electrolytes. Although the potential window of many solid electrolytes is high enough, there are solid electrolytes which are unstable at low operating potentials while others are not stable towards the cathodes; these features result in the appearance of non-conductive interface layers resulting in a low interfacial charge–transfer kinetics. In this review, we discuss the latest advancements in the field of Li-ion conducting electrolytes from the points of their fundamental properties. The latest achievements in the fields of cell design and improvements of (solid-state electrolytes)/(various anodes) and (solid-state electrolytes)/(various cathodes) compatibilities are considered as well.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Funke K (2013) Solid state ionics: from Michael Faraday to green energy—the European dimension. Sci Technol Adv Mater 14(043502):1–50

    Google Scholar 

  2. US Patent 3,404,035 (1968) US Patent 3,413,150

  3. De Rossi M, Pistoia G, Scrosati B (1969) A reversible solid-state battery with RbAg4I5 as electrolyte. J Electrochem Soc 116:1642–1645

    Google Scholar 

  4. Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1992) Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53–56. PT 1:647–654

    Google Scholar 

  5. Mulmi S, Thangadurai V (2019) Solid-state electrolytes: structural approach, in Ed. R. Murugan and W. Weppner, Solid electrolytes for advanced applications: garnets and competitors; Springer. Ebook, https://doi.org/10.1007/978-3-030-31581-8 

  6. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

  7. Sheng O, Jin C, Ding X, Liu T, Wan Y, Liu Y, Nai J, Wang Y, Liu C, Tao X (2021) A decade of progress on solid-state electrolytes for secondary batteries: advances and contributions. Adv Funct Mater 31:1–25

    Google Scholar 

  8. Boaretto N, Garbayo I, Raj SVS, Quintela A, Li C, Casas-Cabanas M, Aguesse F (2021) Lithium solid-state batteries: state-of-the-art and challenges for materials, interfaces and processing. J Power Sources 502:229919, 1–34

  9. Strauss E, Menkin S, Golodnitsky D (2017) On the way to high-conductivity single lithium-ion conductors. J Solid State Electrochem 21:1879–1905

  10. Michael MS, Begam KM, Cloke M, Prabaharan SRS (2008) New NASICON type oxyanion high capacity anode, Li2Co2(MoO4)3, for lithium-ion batteries: preliminary studies. J Solid State Electrochem 12:1025–1029

  11. Placke T, Kloepsch R, Dühnen S, Winter M (2017) Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem 21:1939–1964

  12. Sivaraj P, Abhilash KP, Nalini B, et al 2021 (2020) Freestanding, high Li-ion conducting electrolytes for all-solid-state batteries. J Solid State Electrochem 25:905–917

  13. Liu Z, Li G, Borodin A, et al. (2019) In situ X-ray photoelectron spectroscopy investigation of the solid. J Solid State Electrochem 23:2107–2117

  14. Blanga R, Goor M, Burstein L et al (2016) The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries. J Solid State Electrochem 20:3393–3404

  15. Kataoka K, Akao T, Nagata H, Nagai H, Akimoto J, Akiwatari J (2019) Development of a compact all-solid-state lithium secondary battery using a single crystal solid electrolyte — aiming to realize an oxide-based all-solid-state lithium secondary battery. Synthesiology (English edition) 12:29–40

    Google Scholar 

  16. Kataoka K, Nagata H, Akimoto J (2018) Lithium-ion conducting oxide single crystal as solid electrolyte for advanced Lithium battery application. Sci Rep 12:13–15

    Google Scholar 

  17. Lin J, Lin L, Qu S, Deng D, Wu Y, Yan X, Xie Q, Wang L, Peng D (2021) Promising electrode and electrolyte materials for high-energy-density thin-film lithium batteries. Energy and Environmental materials 5:133–156

    Google Scholar 

  18. Dias JA, Santagneli SH, Messaddeq Y (2020) Methods for lithium-ion NASICON preparation: from solid-state synthesis to highly conductive glass-ceramics. J Phys Chem C 124:26518–26539

    CAS  Google Scholar 

  19. Chen A, Qu C, Shi Y, Shi F (2020) Manufacturing strategies for solid electrolyte in batteries. Front Energy Res 8:1–18

    Google Scholar 

  20. DeWees R, Wang H (2019) Synthesis and properties of NASICON-type LATP and LAGP solid electrolytes. Chemsuschem 12:3713–3725

    CAS  PubMed  Google Scholar 

  21. Yang T, Liu X, Sang L, Ding F (2013) Control of interface of glass-ceramic electrolyte/liquid electrolyte for aqueous lithium batteries. J of Power Sources 244:43–49

    CAS  Google Scholar 

  22. Nuernberg RB, Rodrigues ACM (2017) A new NASICON lithium ion-conducting glass-ceramic of the Li1+xCrx(GeyTi1−y)2–x(PO4)3 system. Solid State Ionics 301:1–9

    CAS  Google Scholar 

  23. Yan B, Zhu Y, Pan F, Liu J, Lu L (2015) Li1.5Al0.5Ge1.5(PO4)3 Li-ion conductor prepared by melt-quench and low temperature pressing. Solid State Ionics 278:65–68

    CAS  Google Scholar 

  24. Cui Y, Mahmoud MM, Rohde M, Ziebert C, Seifert HJ (2016) Thermal and ionic conductivity studies of lithium aluminum germanium phosphate solid-state electrolyte. Solid State Ionics 289:125–132

    CAS  Google Scholar 

  25. Thokchom JS, Kumar B (2008) Composite effect in superionically conducting lithium aluminum germanium phosphate based glass-ceramic. J of Power Sources 185:480–485

    CAS  Google Scholar 

  26. Rahaman MN (2008) Sintering of ceramics. CRC Press, Boca Raton

    Google Scholar 

  27. Dashjav E, Ma Q, Xu Q, Tsai C-L, Giarola M, Mariotto G, Tietz F (2018) The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates. Solid State Ionics 321:83–90

    CAS  Google Scholar 

  28. Wang C, Liang J, Luo J, Liu J, Li X, Zhao F, Li R, Huang H, Zhao S, Zhang L, Wang J (2021) A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Science advances 7:eabh1896 (1–9)

  29. Zhu Y, Wu T, Sun J, Kotobuki M (2020) Highly conductive lithium aluminum germanium phosphate solid electrolyte prepared by sol-gel method and hot-pressing. Solid State Ionics 350:115320

    CAS  Google Scholar 

  30. Chen C, Jiang M, Zhou T, Raijmakers L, Vezhlev E, Wu B, Schülli TU, Danilov DL, Wei Y, Eichel R-A, Notten PHL (2021) Interface aspects in all-solid-state Li-based batteries reviewed. Adv Energy Mater 11:2003939

    CAS  Google Scholar 

  31. Song YB, Kwak H, Cho W, Kim KS, Jung YS, Park K-H (2022) Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries. Curr Opin Solid State Mater Sci 26:100977

    Google Scholar 

  32. Wolfenstine J, Allen JL, Sakamoto J, Siegel DJ, Choe H (2018) Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review. Ionics 24:1271–1276

    CAS  Google Scholar 

  33. Barai P, Rojas T, Narayanan B, Ngo AT, Curtiss LA, Srinivasan V (2021) Investigation of delamination-induced performance decay at the cathode/LLZO interface. Chem Mater 33:5527–5541

    CAS  Google Scholar 

  34. He X, Zhu Y, Mo Y (2017) Origin of fast ion diffusion in super-ionic conductors. Nat Commun 8:15893

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C (2019) Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater 18:1278–1291

    CAS  PubMed  Google Scholar 

  36. Dyre JC, Maass P, Roling B, Sidebottom DL (2009) Fundamental questions relating to ion conduction in disordered solids. Rep Prog Phys 72:046501

    Google Scholar 

  37. Chandra A, Bhatt A, Chandra A (2013) Ion conduction in superionic glassy electrolytes: an overview. J Mater Sci Technol 29:193–208

    CAS  Google Scholar 

  38. Tealdi C, Quartarone E, Mustarelli P (2015) In Z. Zhang and S.S. Zhang, Green energy and technology. Springer, Switzerland

  39. Goodenough JB, Hong HY-P, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Mater Res Bull 11:203–220

    CAS  Google Scholar 

  40. Hagman L, Kierkegaard P (1968) The crystal structure of NaMeIV(PO4)3; MeIV = Ge, Ti, Zr. Acta Chem Scand 22:1822–1832

    CAS  Google Scholar 

  41. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G-Y (1989) Ionic conductivity of the lithium titanium phosphate (Li1 + X MXTi2 − X (PO4)3, M = Al, Sc, Y, and La) systems. J of the Electrochem Society 136:590–591

    CAS  Google Scholar 

  42. Jian Z, Y. – S. Hu, X. Ji, W. Chen, (2017) NASICON-structured materials for energy storage. Adv Mater 29:1601925

    Google Scholar 

  43. Zheng F, Kotobuki M, Song S, Lai MO, Lu L (2018) Review on solid electrolytes for all-solid-state lithium-ion batteries. J Power Sources 389:198–213

    CAS  Google Scholar 

  44. Yang K, Chen C, Ma J, He YB, Kang F (2021) Progress and perspective of Li1+xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries. InfoMat 3:1195–121

  45. Belous A, Kolbasov G, Kovalenko L et al (2018) All solid-state battery based on ceramic oxide electrolytes with perovskite and NASICON structure. J Solid State Electrochem 22:2315–2320

  46. Rao RP, Maohua C, Adams S (2012) Preparation and characterization of NASICON type Li + ionic conductors. J Solid State Electrochem 16:3349–3354

  47. Savitha T, Selvasekarapandian S, Ramya CS (2008) Structural and electrical conductivity studies of Li x AlZr[PO4]3 (x = 1.8, 2.0, 2.2), solid electrolyte for lithium-rechargeable batteries J Solid State Electrochem 12:857–860

  48. Aatiq A, Ménétrier M, Croguennec L, Suard E, Delmas C (2002) On the structure of Li3Ti2(PO4)3. J Mater Chem 12:2971–2978

    CAS  Google Scholar 

  49. Arbi K, Hoelzel M, Kuhn A, García-Alvarado F, Sanz J (2013) Structural factors that enhance lithium mobility in fast-ion Li1+xTi2–xAlx(PO4)3 (0 ≤ x ≤ 0.4) conductors investigated by neutron diffraction in the temperature range 100–500 K. Inorg Chem 52:9290–9296

    CAS  PubMed  Google Scholar 

  50. Cretin M, Fabry P (1999) Comparative study of lithium ion conductors in the system Li1+xAlxA2−xIV(PO4)3 with AIV= Ti or Ge and 0≤x≤0.7 for use as Li+ sensitive membranes. J Eur Ceram Soc 19:2931–2940

    CAS  Google Scholar 

  51. Arbi K, Bucheli W, Jiménez R, Sanz J (2015) High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M=Ti, Ge and 0≤x≤0.5). J Eur Ceram Soc 35:1477–1484

    CAS  Google Scholar 

  52. Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell KG, Bucharsky EC, Hoffmann MJ, Ehrenberg H (2016) Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor. Inorg Chem 55:2941–2945

    CAS  PubMed  Google Scholar 

  53. Wang T, Mei J, Liu J, Liao T (2021) Maximizing ionic transport of Li1+xAlxTi2-xP3O12 electrolytes for all-solid-state lithium-ion storage: a theoretical study. J Mater Sci Technol 73:45–51

    CAS  Google Scholar 

  54. Akkinepally B, Reddy IN, Ko TJ, Yoo K, Shim J (2022) Dopant effect on Li+ ion transport in NASICON-type solid electrolyte: insights from molecular dynamics simulations and experiments. Ceram Int 4:12142–12151

    Google Scholar 

  55. Xiao Y, Jun K, Wang Y, Miara LJ, Tu Q, Ceder G (2021) Lithium oxide superionic conductors inspired by garnet and NASICON structures. Adv Energy Mater 11:2101437

    CAS  Google Scholar 

  56. Xiao W, Wang J, Fan L, Zhang J, Li X (2019) Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Materials 19:379–400

    Google Scholar 

  57. Arbi K, Mandal S, Rojo JM, Sanz J (2002) Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7. A parallel NMR and electric impedance study. Chem Mater 14:1091–1097

    CAS  Google Scholar 

  58. Sun Z, Liu L, Lu Y, Shi G, Li J, Ma L, Zhao J, An H (2019) Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor. J Eur Ceram Soc 39:402–408

    CAS  Google Scholar 

  59. Nikodimos Y, Tsai MC, Abrha LH, Weldeyohannis HH, Chiu SF, Bezabh HK, Shitaw KN, Fenta FW, Wu SH, Su WN, Yang CC, Hwang BJ (2020) Al-Sc dual-doped LiGe2(PO4)3 - a NASICON-type solid electrolyte with improved ionic conductivity. J Mater Chem A 8:11302–11313

    CAS  Google Scholar 

  60. Rettenwander D, Welzl A, Pristat S, Tietz F, Taibl S, Redhammer GJ, Fleig J (2016) A microcontact impedance study on NASICON-type Li1+xAlxTi2–x(PO4)3 (0 ≤ x ≤ 0.5) single crystals. J Mater Chem A 4:1506–1513

    CAS  Google Scholar 

  61. Mariappan CR, Mi. Gellert, C. Yada, F. Rosciano, B. Roling, (2012) Grain boundary resistance of fast lithium ion conductors: comparison between a lithium-ion conductive Li–Al–Ti–P–O-type glass ceramic and a Li1.5Al0.5Ge1.5P3O12 ceramic. Electrochem Commun 14:25–28

    CAS  Google Scholar 

  62. Xu Q, Tsai CL, Song D, Basak S, Kungl H, Tempel H, Hausen F, Yu S, Eichel RA (2021) Insights into the reactive sintering and separated specific grain/grain boundary conductivities of Li1.3Al0.3Ti1.7(PO4)3. J. of Power Sources 492 : 229631

  63. Ren Y, Deng H, Zhao H, Zhou Z, Wei Z (2020) A simple and effective method to prepare dense Li1.3Al0.3Ti1.7(PO4)3 solid–state electrolyte for lithium-oxygen batteries. Ionics 26:6049–6056

    CAS  Google Scholar 

  64. Kotobuki M, Koishi M (2019) Influence of precursor calcination temperature on sintering and conductivity of Li1.5Al0.5Ti1.5(PO4)3 ceramics. Journal of Asian Ceramic Societies 7:69–74

    Google Scholar 

  65. Yen P-Y, Lee M-L, Gregory DH, Liu W-R (2020) Optimization of sintering process on Li1+xAlxTi2-x(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries. Ceram Int 46:20529–20536

    CAS  Google Scholar 

  66. Kang J, Gu R, Guo X, Li J, Sun H, Zhang L, Jing R, Jin L, Wei X (2022) Effect of SnO–P2O5–MgO glass addition on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Ceram Int 48:157–163

    CAS  Google Scholar 

  67. Kim Y-C, K. – N. Jung, J. – W. Lee, M.- S. Park, (2020) Improving the ionic conductivity of Li1+xAlxGe2-x(PO4)3 solid electrolyte for all-solid-state batteries using microstructural modifiers. Ceram Int 46:23200–23207

    CAS  Google Scholar 

  68. Saffirio S, Falco M, Appetecchi GB, Smeacetto F, Gerbaldi C (2022) Li1.4Al0.4Ge0.4Ti1.4(PO4)3 promising NASICON-structured glass-ceramic electrolyte for all-solid-state Li-based batteries: unravelling the effect of diboron trioxide. J European Ceramic Society 42:1023–1032

    CAS  Google Scholar 

  69. Kwatek K, Ślubowska W, Trébosc J, Lafon O, Nowiński JL (2020) Impact of Li2.9B0.9S0.1O3.1 glass additive on the structure and electrical properties of the LATP-based ceramics. J Alloys Compd 820:153072

  70. Odenwald P, Ma Q, Davaasuren B, Dashjav E, Tietz F, Wolff M, Rheinheimer W, Uhlenbruck S, Guillon O, Fattakhova-Rohlfing D (2022) The impact of lithium tungstate on the densification and conductivity of phosphate lithium-ion conductors. Chem Electro Chem 9

  71. Vizgalov VA, Nestler T, Vyalikh A, Bobrikov IA, Ivankov OI, Petrenko V, Avdeev MV, Yashina LV, Itkis DM (2019) The role of glass crystallization processes in preparation of high Li-conductive NASICON-type ceramics. Cryst Eng Comm 21:3106–3115

    CAS  Google Scholar 

  72. Key B, Schroeder DJ, Ingram BJ, Vaughey JT (2012) Solution-based synthesis and characterization of Lithium-ion conducting phosphate ceramics for lithium metal batteries. Chem Mater 24:287–293

    CAS  Google Scholar 

  73. Liu Z, Venkatachalam S, Kirchhain H, van Wüllen L (2016) Study of the glass-to-crystal transformation of the NASICON-type solid electrolyte Li1+xAlxGe2−x(PO4)3. Solid State Ionics 295:32–40

    CAS  Google Scholar 

  74. Yu S, Mertens A, Gao X, Gunduz DC, Schierholz R, Benning S, Hausen F, Mertens J, Kungl H, Tempel H, Eichel RA (2016) Influence of microstructure and AlPO4 secondary-phase on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte. Funct Mater Lett 9:1650066

  75. Schiffmann N, Bucharsky EC, Schell KG, Fritsch CA, Knapp M, Hoffmann MJ (2021) Upscaling of LATP synthesis: stoichiometric screening of phase purity and microstructure to ionic conductivity maps. Ionics 27:2017–2025

    CAS  Google Scholar 

  76. Thokchom JS, Kumar B (2010) The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic. J of Power Sources 195:2870–2876

    CAS  Google Scholar 

  77. Xu W, Qin C, Zhang S, Liang H, Lei W, Luo Z, Lu A (2021) Thermal, structural and electrical properties of fluorine-doped Li3.6Al0.8Ti4.0P7.6O30-(x/2)Fx (x = 0, 0.5, 1, 2) glass-ceramic electrolytes. J Alloys Compd 853:157191

  78. Kwatek K, Ślubowska W, Nowiński JL, Krawczyńska AT, Sobrados I, Sanz J (2021) Electrical and structural properties of Li1.3Al0.3Ti1.7(PO4)3—based ceramics prepared with the addition of Li4SiO4. Materials 14 : 5729

  79. Kwatek K, Ślubowska W, Trébosc J, Lafon O, Nowiński JL (2020) Structural and electrical properties of ceramic Li-ion conductors based on Li1.3Al0.3Ti1.7(PO4)3-LiF. J Eur Ceram Soc 40:85–93

    CAS  Google Scholar 

  80. Kwatek K, Ślubowska W, Ruiz C, Sobrados I, Sanz J, Garbarczyk JE, Nowiński JL (2020) The mechanism of enhanced ionic conductivity in Li1.3Al0.3Ti1.7(PO4)3 – (0.75·Li2O × 0.25·B2O3) composites. J. of Alloys and Compounds 838 : 155623

  81. Bai H, Hu J, Li X, Duan Y, Shao F, Kozawa T, Naito M, Zhang J (2018) Influence of LiBO2 addition on the microstructure and lithium-ion conductivity of Li1+xAlxTi2−x(PO4)3 (x = 0.3) ceramic electrolyte. Ceram Int 44:6558–6563

    CAS  Google Scholar 

  82. Duan S, Yu J, Sun Y, Li A, Chen S, Qu K, Ding Z, Liu Z, Li Y, Huang C, Liu M, Liu J, Shi J, Huang B, Tian X, Hou S, Xie S, Liu Y, Gao P, Li J, Jin H (2020) Selective doping to relax glassified grain boundaries substantially enhances the ionic conductivity of LiTi2(PO4)3 glass-ceramic electrolytes. J of Power Sources 449:227574

    CAS  Google Scholar 

  83. Kobayashi R, Nakano K, Nakayama M (2022) Non-equilibrium molecular dynamics study on atomistic origin of grain boundary resistivity in NASICON-type Li-ion conductor. Acta Mater 226:117596

    CAS  Google Scholar 

  84. Nakano K, Tanibata N, Takeda H, Kobayashi R, Nakayama M, Watanabe N (2021) Molecular dynamics simulation of Li-ion conduction at grain boundaries in NASICON-Type LiZr2(PO4)3 solid electrolytes. J Phys Chem C 125:23604–23612

    CAS  Google Scholar 

  85. Thokchom JS, Kumar B (2007) Ionically conducting composite membranes from the Li2O–Al2O3–TiO2–P2O5 glass–ceramic. J Am Ceram Soc 90:462–466

    CAS  Google Scholar 

  86. Luo J (2015) Interfacial engineering of solid electrolytes. Journal of Materiomics 1:22–32

    Google Scholar 

  87. Dai L, Wang J, Shi Z, Yu L, Shi J (2021) Influence of LiBF4 sintering aid on the microstructure and conductivity of LATP solid electrolyte. Ceram Int 47:11662–11667

    CAS  Google Scholar 

  88. Zhu Y, He X, Mo Y (2015) Origin of outstanding stability in the Lithium solid electrolyte materials: insights from thermodynamic analyses based on first- principles calculations. ACS Appl Mater Interfaces 7:23685–23693

    CAS  PubMed  Google Scholar 

  89. Yasmine B, Maxime R, Steeve R, Geoffroy H, Mickaël D (2021) Assessing the electrochemical stability window of NASICON-type solid electrolytes. Frontiers in Energy Research 9:682008

    Google Scholar 

  90. Zhu J, Zhao J, Xiang Y, Lin M, Wang H, Zheng B, He H, Wu Q, Huang JY, Yang Y (2020) Chemomechanical failure mechanism study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid-state lithium batteries. Chem Mater 32:4998–5008

    CAS  Google Scholar 

  91. Paul PP, Chen B-R, Langevin SA, Dufek EJ, Weker JN, Ko JS (2022) Interfaces in all solid state Li-metal batteries: a review on instabilities, stabilization strategies, and scalability. Energy Storage Materials 45:969–1001

    Google Scholar 

  92. Tolganbek N, Serikkazyyeva A, Kalybekkyzy S, Sarsembina M, Kanamura K, Bakenov Z, Mentbayev A (2022) Interface modification of NASICON-type Li-ion conducting ceramic electrolytes: a critical evaluation. Mater Adv 3:3055–3069

    CAS  Google Scholar 

  93. Cortes FJQ, Lewis JA, Tippens J, Marchese TS, McDowell MT (2020) How metallic protection layers extend the lifetime of NASICON-based solid-state lithium batteries. J of the Electrochem Society 167:050502

    CAS  Google Scholar 

  94. Lewis JA, Cortes FJQ, Boebinger MG, Tippens J, Marchese TS, Kondekar N, Liu X, Chi M, McDowell MT (2019) Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett 4:591–599

    CAS  Google Scholar 

  95. Krauskopf T, Richter FH, Zeier WG, Janek J (2020) Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem Rev 120:7745–7794

    CAS  PubMed  Google Scholar 

  96. Hu F, Li Y, Wei Y, Yang J, Hu P, Rao Z, Chen X, Yuan L, Li Z (2020) Construct an ultrathin bismuth buffer for stable solid-state lithium metal batteries. ACS Appl Mater Interfaces 12:12793–12800

    CAS  PubMed  Google Scholar 

  97. Liu Y, Li C, Li B, Song H, Cheng Z, Chen M, He P, Zhou H (2018) Germanium thin film protected lithium aluminium germanium phosphate for solid-state Li batteries. Adv Energy Mater 8:1702374

    Google Scholar 

  98. Han F, Westover AS, Yue J, Fan X, Wang F, Chi M, Leonard DN, Dudney NJ, Wang H, Wang C (2019) High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy 4:187–196

    CAS  Google Scholar 

  99. Hao X, Zhao Q, Su S, Zhang S, Ma J, Shen L, Yu Q, Zhao L, Liu Y, Kang F, He YB (2019) Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries. Adv. Energy Mater. 9 : 1901604

  100. Ci N, Zhang L, Li J, Li D, Cheng J, Sun Q, Xi Z, Xu Z, Zhao G, Ci L (2022) In situ construction of a flexible interlayer for durable solid-state lithium metal batteries. Carbon 187:13–21

    CAS  Google Scholar 

  101. Liu Y, Sun Q, Zhao Y, Wang B, Kaghazchi P, Adair KR, Li R, Zhang C, Liu J, Kuo L-Y, Hu Y, Sham T-K, Zhang L, Yang R, Lu S, Song X, Sun X (2018) Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Appl Mater Interfaces 10:31240–31248

    CAS  PubMed  Google Scholar 

  102. Bai H, Hu J, Duan Y, Kozawa T, Naito M, Zhang J, Dong S (2019) Surface modification of Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte by Al2O3-doped ZnO coating to enable dendrites-free all-solid-state lithium-metal batteries. Ceram Int 45:14663–14668

    CAS  Google Scholar 

  103. Cheng Q, Li A, Li N, Li S, Zangiabadi A, Li T-D, Huang W, Li AC, Jin T, Song Q, Xu W, Ni N, Zhai H, Dontigny M, Zaghib K, Chuan X, Su D, Yan K, Yang Y (2019) Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating. Joule 3:1510–1522

    CAS  Google Scholar 

  104. Hartmann P, Leichtweiss T, Busche MR, Schneider M, Reich M, Sann J, Adelhelm P, Janek J (2013) Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J Phys Chem C 117:21064–21074

    CAS  Google Scholar 

  105. Harada M, Takeda H, Suzuki S, Nakano K, Tanibata N, Nakayama M, Karasuyama M, Takeuchi I (2020) Bayesian-optimization-guided experimental search of NASICON-type solid electrolytes for all-solid-state Li-ion batteries. J Mater Chem A 8:15103–15109

    CAS  Google Scholar 

  106. Sudreau F, Petit D, Boilot JP (1989) Dimorphism, phase transitions, and transport properties in LiZr2(PO4)3. J Solid State Chem 83:78–90

    CAS  Google Scholar 

  107. Noda Y, Nakano K, Takeda H, Kotobuki M, Lu L, Nakayama M (2017) Computational and experimental investigation of the electrochemical stability and Li-ion conduction mechanism of LiZr2(PO4)3. Chem Mater 29:8983–8991

    CAS  Google Scholar 

  108. He Z, Zhang B, Zhong J, Lin Z, Pan F (2021) Tuning site energy by XO6 units in LiX2(PO4)3 enables high Li ion conductivity and improved stability. ACS Appl Mater Interfaces 13:50948–50956

    CAS  PubMed  Google Scholar 

  109. H. El - Shinawi, A. Regoutz, D. J. Payne, E. J. Cussen, S. A. Corr, (2018) NASICON LiM2(PO4)3 electrolyte (M = Zr) and electrode (M = Ti) materials for all solid-state Li-ion batteries with high total conductivity and low interfacial resistance. J Mater Chem A 6:5296–5303

    Google Scholar 

  110. Subramanian MA, Subramanian R, Clearfield A (1986) Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf). Solid State Ionics 18–19. PT 1:562–569

    Google Scholar 

  111. Li Y, Zhou W, Chen X, Lüc X, Cui Z, Xin S, Xue L, Jia Q, Goodenough JB (2016) Mastering the interface for advanced all-solid-state lithium rechargeable batteries. PNAS 113:13313–13317

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Shi X, Ma N, Wu Y, Lu Y, Xiao Q, Li Z, Lei G (2018) Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery. Solid State Ionics 325:112–119

    CAS  Google Scholar 

  113. Xu X, Wen Z, Wu X, Yang X, Gu Z (2007) Lithium ion-conducting glass–ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x=0.0–0.20) with good electrical and electrochemical properties. J Am Chem Soc 90:2802–2806

    CAS  Google Scholar 

  114. Zhang Z, Zhao Y, Chen S, Xie D, Yao X, Cui P, Xu X (2017) An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. J Mater Chem A 5:16984–16993

    CAS  Google Scholar 

  115. Xiao Y, Wang Y, Bo SH, Kim JC, Miara LJ, Ceder G (2020) Understanding interface stability in solid-state batteries. Nat Rev Mater 5:105–126

    CAS  Google Scholar 

  116. Xiao Y, Miara LJ, Wang Y, Ceder G (2019) Computational screening of cathode coatings for solid-state batteries. Joule 3:1252–1275

    CAS  Google Scholar 

  117. Delaizir G, Viallet V, Aboulaich A, Bouchet R, Tortet L, Seznec V, Morcrette M, Tarascon J-M, Rozier P, Dollé M (2012) The stone age revisited: building a monolithic inorganic Lithium-ion battery. Adv Funct Mater 22:2140–2147

    CAS  Google Scholar 

  118. Yu S, Mertens A, Tempe H, Schierholz R, Kung H, Eichel R-A (2018) Monolithic all-phosphate solid-state lithium-ion battery with improved interfacial compatibility. ACS Appl Mater Interfaces 10:22264–22277

    CAS  PubMed  Google Scholar 

  119. Kunshina GB, Bocharova IV, Ivanenko VI (2020) Compatibility of LiCoPO4 cathode material with Li1.5Al0.5Ge1.5(PO4)3 lithium-ion-conducting solid electrolyte. Inorg Mater 56:204–210

    CAS  Google Scholar 

  120. Nagata K, Nanno T (2007) All solid battery with phosphate compounds made through sintering process. J of Power Sources 174:832–837

    CAS  Google Scholar 

  121. Gellert M, Dashjav E, Grüner D, Ma Q, Tietz F (2018) Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate. Ionics 24:1001–1006

    CAS  Google Scholar 

  122. Robinson JP, Kichambare PD, Deiner JL, Miller R, Rottmayer MA, Koenig GM Jr (2018) High temperature electrode-electrolyte interface formation between LiMn1.5Ni0.5O4 and Li1.4Al0.4Ge1.6(PO4)3. J Am Ceram Soc 101:1087–1094

    CAS  Google Scholar 

  123. Sakakura M, Suzuki Y, Yamamoto T, Yamamoto Y, Motoyama M, Iriyama Y (2021) Low-resistive LiCoO2/Li1.3Al0.3Ti2(PO4)3 interface formation by low-temperature annealing using aerosol deposition. Energy Technology 9 : 2001059

  124. Muto S, Yamamoto Y, Sakakura M, Tian H-K, Tateyama Y, Iriyama Y (2022) STEM-EELS spectrum imaging of an aerosol-deposited NASICON-type LATP solid electrolyte and LCO cathode interface. ACS Appl Energy Mater 5:98–107

    CAS  Google Scholar 

  125. Yoshinari T, Koerver R, Hofmann P, Uchimoto Y, Zeier WG, Janek J (2019) Interfacial stability of phosphate-NASICON solid electrolytes in Ni-rich NCM cathode-based solid-state batteries. Appl Mater Interfaces 11:23244–23253

    CAS  Google Scholar 

  126. Lachal M, El Khal H, Bouvard D, Chaix J-M, Bouchet R, Steil MC (2021) Flash sintering of cationic conductive ceramics: a way to build multilayer systems. J Am Ceram Soc 104:3845–3854

    CAS  Google Scholar 

  127. Zhu H, Liu J (2018) Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond. J of Power Sources 391:10–25

    CAS  Google Scholar 

  128. Okumura T, Takeuchi T, Kobayashi H (2014) Application of LiCoPO4 positive electrode material in all-solid-state lithium-ion battery. Electrochemistry 82:906–908

    CAS  Google Scholar 

  129. Tong H, Liu J, Qiao Y, Song X (2022) Characteristics of interface between solid electrolyte and electrode in all-solid-state batteries prepared by spark plasma sintering. J of Power Sources 521:230964

    CAS  Google Scholar 

  130. Bucci G, Talamini B, Balakrishna AR, Chiang Y-M, Carter WC (2018) Mechanical instability of electrode-electrolyte interfaces in solid-state batteries. Phys Rev Materials 2:105407

    Google Scholar 

  131. Bertrand M, Rousselot S, Aymé-Perrot D, Dollé M (2021) Compatibility assessment of solid ceramic electrolytes and active materials based on thermal dilatation for the development of solid-state batteries. Mater Adv 2:2989–2999

    CAS  Google Scholar 

  132. Xu L, Li J, Deng W, Shuai H, Li S, Xu Z, Li J, Hou H, Peng H, Zou G, Ji X (2021) Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv Energy Mater 11:2000648

    CAS  Google Scholar 

  133. Kataoka K, Akimoto J (2019) Lithium-ion conductivity and crystal structure of garnet-type solid electrolyte Li7-xLa3Zr2-xTaxO12 using single-crystal. J Ceramic Society of Japan 127:521–526

    CAS  Google Scholar 

  134. Meesala Y, Liao Y, Jena A, Yang N, Pang W, Hu S, Chang H, Liu C, Liao S, Chen J, Guo X, Liu R (2019) An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12. J Mater Chem A 7:8589–8601

    CAS  Google Scholar 

  135. Sodhiya A, Kumar R, Patel S, Singh A, Soni S (2020) Study of transport and structural properties of garnet structured Ce3+ doped Li7La3Zr2O12 electrolyte by solid state reaction method. AIP Conf Proc 2269:030073. https://doi.org/10.1063/5.0019544

    CAS  Article  Google Scholar 

  136. Miara LJ, Richards WD, Wang YE, Ceder G (2015) First-principles studies on cation dopants and electrolyte| cathode interphases for lithium garnets. Chem Mater 27:4040–4047

    CAS  Google Scholar 

  137. Stockham MP, Griffiths A, Dong B, Slater PR (2022) Assessing the importance of cation size in the tetragonal-cubic phase transition in Lithium-garnet electrolytes. Chem Eur J 28:e202103442

    CAS  PubMed  Google Scholar 

  138. Raju MM, Altayran F, Johnson M, Wang D, Zhang Q (2021) Crystal structure and preparation of Li7La3Zr2O12 (LLZO) solid-state electrolyte and doping impacts on the conductivity: an overview. Electrochem 2:390–414

    CAS  Google Scholar 

  139. Jonderian A, McCalla E (2021) The role of metal substitutions in the development of Li batteries, part II: solid electrolytes. Mater Adv 2:2846–2875

    CAS  Google Scholar 

  140. Qin S, Zhu X, Jiang Y, Ling M, Hu Z, Zhu J (2018) Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Appl Phys Lett 112:113901

    Google Scholar 

  141. Li J, Zhang J, Zhai H, Tang X, Tan G (2022) Rapid synthesis of garnet-type Li7La3Zr2O12 solid electrolyte with superior electrochemical performance. J European Ceramic Society 42:1568–1575

    CAS  Google Scholar 

  142. Ramakumar S, Janani N, Murugan R (2015) Influence of lithium concentration on the structure and Li+ transport properties of cubic phase lithium garnets. Dalton Trans 44:539–552

    CAS  PubMed  Google Scholar 

  143. Stockham MP, Dong B, Slater PR (2022) High entropy lithium garnets – testing the compositional flexibility of the lithium garnet system. J Solid State Chem 308:122944

    CAS  Google Scholar 

  144. Murugan R, Ramakumar S, Janani N (2011) High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochem Commun 13:1373–1375

    CAS  Google Scholar 

  145. Ohta S, Kobayashi T, Asaoka T (2011) High lithium ionic conductivity in the garnet-type oxide Li7−XLa3(Zr2−X, NbX)O12 (X=0–2). J of Power Sources 196:3342–3345

    CAS  Google Scholar 

  146. Shiiba H, Zettsu N, Yamashita M, Onodera H, Jalem R, Nakayama M, Teshima K (2018) Molecular dynamics studies on the lithium ion conduction behaviors depending on tilted grain boundaries with various symmetries in garnet-type Li7La3Zr2O12. J Phys Chem C 122:21755–21762

    CAS  Google Scholar 

  147. Yu S, Siegel DJ (2017) Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater 29:9639–9647

    CAS  Google Scholar 

  148. Han F, Zhu Y, He X, Mo Y, Wang C (2016) Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater 6:1501590

    Google Scholar 

  149. Connell JG, Fuchs T, Hartmann H, Krauskopf T, Zhu Y, Sann J, Garcia-Mendez R, Sakamoto J, Tepavcevic S, Janek J (2020) Kinetic versus thermodynamic stability of LLZO in contact with lithium metal. Chem Mater 32:10207–10215

    CAS  Google Scholar 

  150. Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More KL, Dudney NJ, Chi M (2016) Interfacial stability of Li metal–solid electrolyte elucidated via in situ electron microscopy. Nano Lett 16:7030–7036

    CAS  PubMed  Google Scholar 

  151. Haarmann L, Rohrer J, Able K (2021) On the origin of zero interface resistance in the Li6.25Al0.25La3Zr2O12|Li0 system: an atomistic investigation. ACS Appl Mater Interfaces 13:52629–52635

    CAS  Google Scholar 

  152. Zhu Y, Connell JG, Tepavcevic S, Zapol P, Garcia-Mendez R, Taylor NJ, Sakamoto J, Ingram BJ, Curtiss LA, Freeland JW, Fong DD, Markovic NM (2019) Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal. Adv Energy Mater 9:1803440

    Google Scholar 

  153. Krauskopf T, Hartmann H, Zeier WG, Janek J (2019) Toward a fundamental understanding of the lithium metal anode in solid-state batteries - an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl Mater Interfaces 11:14463–14477

    CAS  PubMed  Google Scholar 

  154. Baniya A, Gurung A, Pokharel J, Chen K, Pathak R, Lamsal BS, Ghimire N, Bobba RS, Rahman SI, Mabrouk S, Smirnova AL, Xu K, Qiao Q (2022) Mitigating interfacial mismatch between lithium metal and garnet-type solid electrolyte by depositing metal nitride lithiophilic interlayer. ACS Appl Energy Mater 5:648–657

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K, Pastel G, Lin CF, Mo Y, Wachsman ED (2017) Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater 29:1606042

  156. Han X, Gong Y, Fu K, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L (2016) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 16:572–579

    PubMed  Google Scholar 

  157. Neumann A, Hamann TR, Danner T, Hein S, Becker-Steinberger K, Wachsman E, Latz A (2021) Effect of the 3D structure and grain boundaries on Lithium transport in garnet solid electrolytes. ACS Appl Energy Mater 4:4786–4804

    CAS  Google Scholar 

  158. Yu C-Y, Choi J, Han J, Lee E, Kim J-H (2022) Phase stability of garnet solid-electrolyte interfacing with various cathodes in all-solid-state batteries. J Electrochem Soc 169:020520

    Google Scholar 

  159. Tsai C-L, Ma Q, Dellen C, Lobe S, Vondahlen F, Windmüller A, Grüner D, Zheng H, Uhlenbruck S, Finsterbusch M, Tietz F, Fattakhova-Rohlfing D, Buchkremer HP, Guillon O (2019) A garnet structure - based all-solid-state Li battery without interface modification: resolving incompatibility issues on positive electrodes. Sustainable Energy Fuels 3:280–291

    CAS  Google Scholar 

  160. Thangadurai V, Weppner W (2005) Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes. J of Power Sources 142:339–344

    CAS  Google Scholar 

  161. Park K, Yu B-C, Jung J-W, Li Y, Zhou W, Gao H, Son S, Goodenough JB (2016) Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem Mater 28:8051–8059

    CAS  Google Scholar 

  162. (a) Kato T, Hamanaka T, Yamamoto K, Hirayama T, Sagane F, Motoyama M, Iriyama Y (2014) In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J Power Sources 260:292–298; (b) Kumazaki S, Iriyama Y, Kim K-H, Murugan R, Tanabe K, Yamamoto K, Hirayama T, Ogumi Z (2011) High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si. Electrochem Commun 13:509–512

  163. Thangadurai V, Weppner W (2005) Li6ALa2Ta2O12 (A= Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv Funct Mater 15(1):107–112

    CAS  Google Scholar 

  164. Ren Y, Liu T, Shen Y, Lin Y, Nan C-W (2016) Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials. J of Materiomics 2:256–264

    Google Scholar 

  165. Zhao Z, Wen Z, Liu X, Yang H, Chen S, Li C, Lv H, Wu F, Wu B, Mu D (2021) Tuning a compatible interface with LLZTO integrated on cathode material for improving NCM811/LLZTO solid-state battery. Chem Eng J 405:127031

    CAS  Google Scholar 

  166. Li J, Wang R (2021) Recent advances in the interfacial stability, design and in situ characterization of garnet-type Li7La3Zr2O12 solid-state electrolytes based lithium metal batteries. Ceram Int 47:13280–13290

    CAS  Google Scholar 

  167. Yu S, Schmidt RD, Garcia-Mendez R, Herbert E, Dudney NJ, Wolfenstine JB, Sakamoto J, Siegel DJ (2016) Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater 28:197–206

    CAS  Google Scholar 

  168. Thackeray MM, Lee E, Shi B, Croy JR (2022) Review–from LiMn2O4 to partially-disordered Li2MnNiO4: the evolution of lithiated-spinel cathodes for Li-ion batteries. J of the Electrochem Society 169:020535

    Google Scholar 

  169. Barai P, Higa K, Ngo AT, Curtiss LA, Srinivasan V (2019) Mechanical stress induced current focusing and fracture in grain boundaries. J of the Electrochem Society 166:A1752–A1762

    CAS  Google Scholar 

  170. Lu J, Li Y, Y, (2021) Perovskite-type Li-ion solid electrolytes: a review. J Mater Sci: Mater Electron 32:9736–9754

    CAS  Google Scholar 

  171. Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum titanates: a review. Chem Mater 15:3974–3990

    CAS  Google Scholar 

  172. Harada Y, Hirakoso Y, Kawai H, Kuwano J (1999) Order–disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67−xLi3xTiO3 (x=0.11). Solid State Ionics 121:245–251

    CAS  Google Scholar 

  173. García-Martín S, Amador U, Morata-Orrantia A, Rodríguez-Carvajal J, Alario-Franco MÁ (2009) Structure, microstructure, composition and properties of lanthanum lithium titanates and some substituted analogues. Z Anorg Allg Chem 635:2363–2373

    Google Scholar 

  174. Wu J, Chen L, Song T, Zou Z, Gao J, Zhang W, Shi S (2017) A review on structural characteristics, lithium ion diffusion behaviour and temperature dependence of conductivity in perovskite-type solid electrolyte Li3xLa(2∕ 3)− xTiO3. Funct Mater Lett 10:1730002

    CAS  Google Scholar 

  175. Jonderian A, Ting M, McCalla E (2021) Metastability in Li–La–Ti–O perovskite materials and its impact on ionic conductivity. Chem Mater 33:4792–4804

    CAS  Google Scholar 

  176. Symington AR, Purton J, Statham J, Molinari M, Islam MS, Parker SC (2020) Quantifying the impact of disorder on Li-ion and Na-ion transport in perovskite titanate solid electrolytes for solid-state batteries. J Mater Chem A 8:19603–19611

    CAS  Google Scholar 

  177. Li Z, Yang M, Park JS, Wei SH, Berry JJ, Zhu K (2016) Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater 28:284–292

    Google Scholar 

  178. Zhang S, Zhao H, Guo J, Du Z, Wang J, Świerczek K (2019) Characterization of Sr-doped lithium lanthanum titanate with improved transport properties. Solid State Ionics 336:39–46

    CAS  Google Scholar 

  179. Yang Z, Suzuki S, Tanibata N, Takeda H, Nakayama M, Karasuyama M, Takeuchi I (2020) Efficient experimental search for discovering a fast Li-ion conductor from a perovskite-type LixLa(1–x)/3NbO3 (LLNO) solid-state electrolyte using Bayesian optimization. J Phys Chem C 125:152–160

    Google Scholar 

  180. Huang Y, He L, Zhu X (2022) Low temperature synthesis of Li0.33La0.55TiO3 solid electrolyte with Al3+ doping by a modified Pechini method. Ionics 28:1739–1751

    CAS  Google Scholar 

  181. Gu R, Kang J, Guo X, Li J, Yu K, Ma R, Xu Z, Jin L, Wei X (2022) Microstructure and ionic conductivity of Li0.5-xLa0.5(Ti1-xNbx)O3 solid-state electrolytes. J Alloys Compd 896:163084

  182. Thangadurai V, Weppner W (2002) Solid state lithium ion conductors: design considerations by thermodynamic approach. Ionics 8:281–292

    CAS  Google Scholar 

  183. Chung H-T, J. – G. Kim, H. – G. Kim, (1998) Dependence of the lithium ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1−xMxO3 (M=Sn, Zr, Mn, Ge). Solid State Ionics 107:153–160

    CAS  Google Scholar 

  184. He LX, Yoo HI (2003) Effects of B-site ion (M) substitution on the ionic conductivity of (Li3xLa2/3−x)1+y/2(MyTi1−y)O3 (M = Al, Cr). Electrochim Acta 48:1357–1366

    CAS  Google Scholar 

  185. Yao R, Liu ZG, Ding ZY, Jin YJ, Cao G, Wang YH, Ouyang JH (2020) Effect of Sn or Ta doping on the microstructure and total conductivity of perovskite Li0.24La0.587TiO3 solid electrolyte. J Alloys Compd 844:156023

  186. Yu K, Jin L, Li Y, Liu G, Wei X, Yan Y (2019) Structure and conductivity of perovskite Li0.355La0.35Sr0.3Ti0.995M0.005O3 (M = Al, Co and In) ceramics. Ceram Int 45:23941–23947

    CAS  Google Scholar 

  187. Li R, Liao K, Zhou W, Li X, Meng D, Cai R, Shao Z (2019) Realizing fourfold enhancement in conductivity of perovskite Li0.33La0.557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy. J of Membrane Science 582:194–202

    CAS  Google Scholar 

  188. Lu J, Li Y, Ding Y (2020) Structure and conductivity of Li3/8Sr7/16−xAxZr1/4Nb3/4O3 (A = Ca, Ba) Li-ion solid electrolytes. JOM 72:3256–3261

    CAS  Google Scholar 

  189. Sun Y, Guan P, Liu Y, Xu H, Li S, Chu D (2019) Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery. Crit Rev Solid State Mater Sci 44:265–282

    CAS  Google Scholar 

  190. Mitsuishi K, Ohnishi T, Tanaka Y, Watanabe K, Sakaguchi I, Ishida N, Takeguchi M, Ohno T, Fujita D, Takada K (2012) Nazca lines by La ordering in La2/3−xLi3xTiO3 ion-conductive perovskite. Appl Phys Lett 101:073903

    Google Scholar 

  191. Ma C, Chen K, Liang C, Nan C-W, Ishikawa R, More K, Chi M (2014) Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ, Sci 7:1638–1642

    CAS  Google Scholar 

  192. Lee T, Qi J, Gadre CA, Huyan H, Ko ST, Zuo Y, Du C, Li J, Aoki T, Stippich CJ, Wu R, Luo J, Ong SP, Pan X (2022) Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolytes. https://doi.org/10.48550/arXiv.2204.00091

  193. Symington AR, Molinari M, Dawson JA, Statham JM, Purton J, Canepa P, Parker SC (2021) Elucidating the nature of grain boundary resistance in lithium lanthanum titanate. J Mater Chem A 9:6487–6498

    CAS  Google Scholar 

  194. Wu J-F, Guo X (2017) Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3xLa0.67−xTiO3. Phys Chem Chem Phys 19:5880–5887

    CAS  PubMed  Google Scholar 

  195. Xu L, Zhang L, Hu Y, Luo L (2022) Structural origin of low Li-ion conductivity in perovskite solid-state electrolyte. Nano Energy 92:106758

    CAS  Google Scholar 

  196. He X, Li S, Cao G, Hu J, Zhang J, Qiao R, Pan J, Shao G (2020) In situ atomic-scale engineering of the chemistry and structure of the grain boundaries region of Li3xLa2/3-xTiO3. Scripta Mater 185:134–139

    CAS  Google Scholar 

  197. Polczyk T, Zając W, Ziąbka M, Świerczek K (2021) Mitigation of grain boundary resistance in La2/3-xLi3xTiO3 perovskite as an electrolyte for solid-state Li-ion batteries. J Mater Sci 56:2435–2450

    CAS  Google Scholar 

  198. Jiang Y, Huang Y, Hu Z, Zhou Y, Zhu J, Zhu X (2020) Effects of B-site ion (Nb5+) substitution on the microstructure and ionic conductivity of Li0.5La0.5TiO3 solid electrolytes. Ferroelectrics 554:89–96

    CAS  Google Scholar 

  199. Geng H, Lan J, Mei A, Lin Y, Nan CW (2011) Effect of sintering temperature on microstructure and transport properties of Li3xLa2/3−xTiO3 with different lithium contents. Electrochim Acta 56:3406–3414

    CAS  Google Scholar 

  200. Kwon WJ, H. l Kim, K.-N. Jung, W. Cho, S. H. Kim, J. – W. Lee, M. – S. Park, (2017) Enhanced Li+ conduction in perovskite Li3xLa2/3−x□1/3−2xTiO3 solid-electrolytes via microstructural engineering. J Mater Chem A 5:6257–6262

    CAS  Google Scholar 

  201. Lu X, Zhang F, Li J (2021) The influence of lithium sources on properties of perovskite-type lithium ion conductor. J Alloy Compd 875:159887

    CAS  Google Scholar 

  202. Mei A, Wang X-L, Lan J-L, Feng Y-C, Geng H-X, Lin Y-H, Nan C-W (2010) Role of amorphous boundary layer in enhancing ionic conductivity of lithium–lanthanum–titanate electrolyte. Electrochim Acta 55:2958–2963

    CAS  Google Scholar 

  203. Zhang H, Hao S, Lin J (2017) Influence of Li2O-B2O3 glass on ionic migration and interfacial properties of La2/3−xLi3xTiO3 solid electrolyte. J Alloy Compd 704:109–116

    CAS  Google Scholar 

  204. Yu K, Gu R, Wu L, Sun H, Ma R, Jin L, Xu Y, Xu Z, Wei X (2018) Ionic and electronic conductivity of solid electrolyte Li0.5La0.5TiO3 doped with LiO2-SiO2-B2O3 glass. J Alloy Compd 739:892–896

    CAS  Google Scholar 

  205. Salami TJ, Imanieh SH, Lawrence JG, Martin IR (2019) Amorphous glass-perovskite composite as solid electrolyte for lithium-ion battery. Mater Lett 254:294–296

    CAS  Google Scholar 

  206. Boyano I, Mainar AR, Blázquez JA, Kvasha A, Bengoechea M, De Meatza I, García-Martín S, Varez A, Sanz J, García-Alvarado F (2021) Reduction of grain boundary resistance of La0.5Li0.5TiO3 by the addition of organic polymers. Nanomaterials 11:61 (1–12)

  207. Ahn J-K, Yoon S-G (2005) Characteristics of amorphous lithium lanthanum titanate electrolyte thin films grown by PLD for use in rechargeable lithium microbatteries. Electrochem Solid-State Lett 8:A75–A78

    CAS  Google Scholar 

  208. Zheng Z, Fang H, Yang F, Liu Z-K, Wang Y (2014) Amorphous LiLaTiO3 as solid electrolyte material. J Electrochem Soc 161:A473–A479

    CAS  Google Scholar 

  209. Lee JZ, Wang Z, Xin HL, Wynn TA, Meng YS (2017) Amorphous lithium lanthanum titanate for solid-state microbatteries. J Electrochem Soc 164:A6268–A6273

    CAS  Google Scholar 

  210. Zheng Z, Zhang Y, Song S, Wang Y (2017) Sol–gel-processed amorphous inorganic lithium ion electrolyte thin films: sol chemistry. RSC Adv 7:30160–30165

    CAS  Google Scholar 

  211. Zheng Z, Fang H-Z, Liu Z-K, Wang Y (2015) Fundamental stability study for amorphous LiLaTiO3 solid electrolyte. J Electrochem Soc 162:A244–A248

    CAS  Google Scholar 

  212. Tan F, An H, Li N, Du J, Peng Z (2021) A study on Li0.33La0.55TiO3 solid electrolyte with high ionic conductivity and its application in flexible all-solid-state batteries. Nanoscale 13:11518–11524

    CAS  PubMed  Google Scholar 

  213. Binninger T, Marcolongo A, Mottet M, Weber V, Laino T (2020) Comparison of computational methods for the electrochemical stability window of solid-state electrolyte materials. J of Materials Chemistry A 8:1347–1359

    CAS  Google Scholar 

  214. Lu J, Li Y, Ding Y (2021) Li-ion conductivity and electrochemical stability of A-site deficient perovskite-structured Li3x-yLa1-xAl1-yTiyO3 electrolytes. Mater Res Bull 133:111019

    CAS  Google Scholar 

  215. Yang K, Leu I, Fung K, Hon M, Hsu M, Hsiao Y, Wang M (2008) Mechanism of the interfacial reaction between cation-deficient La0.56Li0.33TiO3 and metallic lithium at room temperature. J Mater Res 23:1813–1825

    CAS  Google Scholar 

  216. Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J (2015) Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics 278:98–105

    CAS  Google Scholar 

  217. Inaguma Y (2021) Perovskite-type lithium-ion solid electrolytes. In: Kanamura, K. (eds) Next generation batteries. Springer, Singapore, https://doi.org/10.1007/978-981-33-6668-8_18

  218. Inaguma Y, Itoh M (1996) Influences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides. Solid State Ionics 86:257–260

    Google Scholar 

  219. Shan YJ, Chen L, Inaguma Y, Itoh M, Nakamura T (1995) Oxide cathode with perovskite structure for rechargeable lithium batteries. J of Power Sources 54:397–402

    CAS  Google Scholar 

  220. Birke P, Scharner S, Huggins RA, Weppner W (1997) Electrolytic stability limit and rapid lithium insertion in the fast-Ion-conducting Li0.29La0.57TiO3 perovskite-type compound. J of the Electrochemical Society 144:L167–L169

    CAS  Google Scholar 

  221. Nakayama M, Imaki K, Ikuta H, Uchimoto Y, Wakihara M (2002) Electrochemical lithium insertion for perovskite oxides of LiyLa(1-y)/3NbO3 (y = 0, 0.1, 0.25). J Phys Chem B 106:6437–6441

    CAS  Google Scholar 

  222. Chen CH, Xie S, Sperling E, Yang AS, Henriksen G, Amine K (2004) Stable lithium-ion conducting perovskite lithium–strontium–tantalum–zirconium–oxide system. Solid State Ionics 167:263–272

    CAS  Google Scholar 

  223. Lu J, Li Y (2018) Conductivity and stability of Li3/8Sr7/16-3x/2LaxZr1/4Ta3/4O3 superionic solid electrolytes. Electrochim Acta 282:409–415

    CAS  Google Scholar 

  224. Huang B, Xu B, Li Y, Zhou W, You Y, Zhong S, Wang C-A, Goodenough JB (2016) Li-ion conduction and stability of perovskite Li3/8Sr7/16Hf1/4Ta3/4O3. ACS Appl Mater Interfaces 8:14552–14557

    CAS  PubMed  Google Scholar 

  225. Kong Y, Li Y, Lu J, Hu C (2017) Conductivity and electrochemical stability of perovskite-structured lithium–strontium–niobium–hafnium-oxide solid Li-ion conductor. J Mater Sci: Mater Electron 28:8621–8629

    CAS  Google Scholar 

  226. Chen CH, Amine K (2001) Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate. Solid State Ionics 144:51–57

    CAS  Google Scholar 

  227. Tan F, An H, Li N, Du J, Peng Z (2021) Stabilization of Li0.33La0.55TiO3 solid electrolyte interphase layer and enhancement of cycling performance of LiNi0.5Co0.3Mn0.2O2 battery cathode with buffer layer. Nanomaterials 11:989

  228. Zhu Y, He X, Mo Y (2016) First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 4:3253–3266

    CAS  Google Scholar 

  229. Chandra S, Kim Y, Vivona D, Waluyo I, Hunt A, Schlueter C, Lee JB, Shao-Horn Y, Yildiz B (2022) Thermally-driven reactivity of Li0.35La0.55TiO3 solid electrolyte with LiCoO2 cathode. J Mater Chem A 10:3485–3494

    CAS  Google Scholar 

  230. Xu P, Rheinheimer W, Mishra A, Shuvo SN, Qi Z, Wang H, Dongare AM, Stanciu LA (2021) Origin of high interfacial resistance in solid-state batteries: LLTO/LCO half-cells. Chem Electro Chem 8:1847–1857

    CAS  Google Scholar 

  231. Noh S, Kim J, Eom M, Shin D (2013) Surface modification of LiCoO2 with Li3xLa2, 3−xTiO3 for all-solid-state lithium ion batteries using Li2S–P2S5 glass–ceramic. Ceramics International 39:8453–8458

  232. Zou C, Yang L, Luo K et al (2021) Ionic conductivity and interfacial stability of Li6PS5Cl–Li6.5La3Zr1.5Ta0.5O12 composite electrolyte. J Solid State Electrochem 25:2513–2525

  233. Yi J, He P, Liu H, Ni H, Bai Z, Fan L-Z (2021) Manipulating interfacial stability of LiNi0.5Co0.3Mn0.2O2 cathode with sulfide electrolyte by nanosized LLTO coating to achieve high-performance all-solid-state lithium batteries. J Energy Chem 52:202–209

    Google Scholar 

  234. Fan Z, Xiang J, Yu Q, Wu X, Li M, Wang X, Xia X, Tu J (2022) High performance single-crystal Ni-rich cathode modification via crystalline LLTO nanocoating for all-solid-state Lithium batteries. ACS Appl Mater Interfaces 14:726–735

    CAS  PubMed  Google Scholar 

  235. Lin X, Wang H, Du H, Xiong X, Qu B, Guo Z, Chu D (2016) Growth of lithium lanthanum titanate nanosheets and their application in Lithium-ion batteries. ACS Appl Mater Interfaces 8:1486–1492

    CAS  PubMed  Google Scholar 

  236. Xu C-L, Xiang W, Wu Z-G, Li Y-C, Xu Y-D, Hua W-B, Guo X-D, Zhang X-B, Zhong B-H (2018) A comparative study of crystalline and amorphous Li0.5La0.5TiO3 as surface coating layers to enhance the electrochemical performance of LiNi0.815Co0.15Al0.035O2 cathode. J Alloy Compd 740:428–435

    CAS  Google Scholar 

  237. Hua S, Li Y, Lai F, Zhang X, Li Q, Huang Y, Yuan X, Chen J, Wang H (2015) Enhanced electrochemical performance of LiMn2O4 cathode with a Li0.34La0.51TiO3-coated layer. RSC Adv 5:17592–17600

    Google Scholar 

  238. Zhao Y, Daemen LL (2012) Superionic conductivity in lithium-rich anti-perovskites. J Am Chem Soc 134:15042–15047

    CAS  PubMed  Google Scholar 

  239. Xia W, Zhao Y, Zhao F, Adair K, Zhao R, Li S, Zou R, Zhao Y, Sun X (2022) Antiperovskite electrolytes for solid-state batteries. Chem Rev 122:3763–3819

    CAS  PubMed  Google Scholar 

  240. Emly A, Kioupakis E, Van der Ven A (2013) Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors. Chem Mater 25:4663–4670

    CAS  Google Scholar 

  241. Zhang Y, Zhao Y, Chen C (2013) Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites. Phys Rev B 87:134303

    Google Scholar 

  242. Mouta R, Melo MAB, Diniz EM, Paschoal CWA (2014) Concentration of charge carriers, migration, and stability in Li3OCl solid electrolytes. Chem Mater 26:7137–7144

    CAS  Google Scholar 

  243. Lu Z, Chen C, Baiyee ZM, Chen X, Niu C, Ciucci F (2015) Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors. Phys Chem Chem Phys 17:32547–32555

    CAS  PubMed  Google Scholar 

  244. Wu M, Xu B, Lei X, Huang K, Ouyang C (2018) Bulk properties and transport mechanisms of a solid state antiperovskite Li-ion conductor Li3OCl: insights from first principles calculations. J Mater Chem A 6:1150–1160

    CAS  Google Scholar 

  245. Dawson JA, Famprikis T, Johnston KE (2021) Anti-perovskites for solid-state batteries: recent developments, current challenges and future prospects. J Mater Chem A 9:18746–18772

    CAS  Google Scholar 

  246. Islam MS, Davies RA (2004) Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 14:86–93

    CAS  Google Scholar 

  247. Stegmaier S, Voss J, Reuter K, Luntz AC (2017) Li+ defects in a solid-state Li ion battery: theoretical insights with a Li3OCl electrolyte. Chem Mater 29:4330–4340

    CAS  Google Scholar 

  248. Clarke MJ, Dawson JA, Mays TJ, Islam MS (2021) Atomistic insights into the effects of doping and vacancy clustering on Li-ion conduction in the Li3OCl antiperovskite solid electrolyte. ACS Appl Energy Mater 4:5094–5100

    CAS  Google Scholar 

  249. Braga MH, Ferreira JA, Stockhausen V, Oliveira JE, El-Azab A (2014) Novel Li3ClO based glasses with superionic properties for lithium batteries. J Mater Chem A 2:5470–5480

    CAS  Google Scholar 

  250. Braga MH, Murchison AJ, Ferreira JA, Singh P, Goodenough JB (2016) Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells. Energy Environ Sci 9:948–954

    CAS  Google Scholar 

  251. Hanghofer I, Redhammer GJ, Rohde S, Hanzu I, Senyshyn A, Wilkening HMR, Rettenwander D (2018) Untangling the structure and dynamics of lithium-rich anti-perovskites envisaged as solid electrolytes for batteries. Chem Mater 30:8134–8144

    CAS  Google Scholar 

  252. Squires A, Dean JM, Morgan BJ (2021) Aliovalent doping strategies for enhancing ionic conductivity in Li3OCl solid electrolytes: a first-principles assessment. https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/611534d018911d675edf20e2/original/aliovalent-doping-response-and-impact-on-ionic-conductivity-in-the-antiperovskite-solid-electrolyte-li3o-cl.pdf

  253. Li S, Zhu J, Wang Y, Howard JW, Lü X, Li Y, Kumar RS, Wang L, Daemen LL, Zhao Y (2016) Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X=Cl, Br). Solid State Ionics 284:14–19

    CAS  Google Scholar 

  254. Wang F, Evans HA, Kim K, Yin L, Li Y, Tsai PC, Liu J, Lapidus SH, Brown CM, Siegel DJ, Chiang YM (2020) Dynamics of hydroxyl anions promotes lithium ion conduction in antiperovskite Li2OHCl. Chem Mater 32:8481–8491

    CAS  Google Scholar 

  255. Li Y, Zhou W, Xin S, Li S, Zhu J, Lü X, Cui Z, Jia Q, Zhou J, Zhao Y, Goodenough JB (2016) Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries. Angew Chem Int Ed 55:9965–9968

    CAS  Google Scholar 

  256. Effat MB, Liu J, Lu Z, Wan TH, Curcio A, Ciucci F (2020) Stability, elastic properties, and the Li transport mechanism of the protonated and fluorinated antiperovskite lithium conductors. ACS Appl Mater Interfaces 12:55011–55022

    CAS  PubMed  Google Scholar 

  257. Hood ZD, Wang H, Pandian AS, Keum JK, Liang C (2016) Li2OHCl crystalline electrolyte for stable metallic lithium anodes. J Am Chem Soc 138:1768–1771

    CAS  PubMed  Google Scholar 

  258. Lee Y-S, Jung S-Y, Ryu K-S (2021) Electrochemical stability and performance of Li2OHCl substituted by F or Br as solid-state electrolyte. J Electrochem En Conv Stor 18:021011

    CAS  Google Scholar 

  259. Deng Z, Radhakrishnan B, Ong SP (2015) Rational composition optimization of the lithium-rich Li3OCl1–xBrx anti-perovskite superionic conductors. Chem Mater 27:3749–3755

    CAS  Google Scholar 

  260. Mouta R, Diniz EM, Paschoal CWA (2016) Li+ interstitials as the charge carriers in superionic lithium-rich anti-perovskites. J Mater Chem A 4:1586–1590

    CAS  Google Scholar 

  261. Li P, Hussain F, Cui P, Li Z, Yang J (2019) Boosting ionic conductivity in antiperovskite Li3OCl via defect engineering: interstitial versus vacancy. Phys Rev Materials 3:115402

    CAS  Google Scholar 

  262. Yin L, Yuan H, Kong L, Lu Z, Zhao Y (2020) Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries. Chem Commun 56:1251–1254

    CAS  Google Scholar 

  263. Dawson JA, Canepa P, Famprikis T, Masquelier C, Islam MS (2018) Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries. J Am Chem Soc 140:362–368

    CAS  PubMed  Google Scholar 

  264. Lü X, Howard JW, Chen A, Zhu J, Li S, Wu G, Dowden P, Xu H, Zhao Y, Jia Q (2016) Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries. Advanced Science 3:1500359

    PubMed  PubMed Central  Google Scholar 

  265. Chen B, Xu C, Zhou J (2018) Insights into grain boundary in lithium-rich anti-perovskite as solid electrolytes. J of the Electrochem Society 165:A3946–A3951

    CAS  Google Scholar 

  266. Wang Z, Xu H, Xuan M, Shao G (2018) From anti-perovskite to double anti-perovskite: tuning lattice chemistry to achieve super-fast Li+ transport in cubic solid lithium halogen–chalcogenides. J Mater Chem A 6:73–83

    CAS  Google Scholar 

  267. Xu H, Xuan M, Xiao W, Shen Y, Li Z, Wang Z, Hu J, Shao G (2019) Lithium ion conductivity in double antiperovskite Li6.5OS1.5I1.5: alloying and boundary effects. ACS Appl Energy Mater 2:6288–6294

    CAS  Google Scholar 

  268. Lai Z, Feng W, Dong X, Zhou X, Wang Y, Xia Y (2021) Lithium dendrites suppressed by low temperature in-situ anti-perovskite coated garnet solid-state electrolyte. J of Power Sources 500:229982

    CAS  Google Scholar 

  269. Sugumar MK, Yamamoto T, Motoyama M, Iriyama Y (2020) Room temperature synthesis of anti-perovskite structured Li2OHBr. Solid State Ionics 349:115298

    CAS  Google Scholar 

  270. Lü X, Wu G, Howard JW, Chen A, Zhao Y, Daemen LL, Ji Q (2014) Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity. Chem Commun 50:11520–11522

    Google Scholar 

  271. Rajagopal R, Park M-H, Subramanian Y, Jung YJ, Ryu K-S (2021) Synthesis and electrochemical performance of antiperovskite-like Li3SI solid electrolyte. J Electroanal Chem 895:115477

    CAS  Google Scholar 

  272. Wu MS, Xu B, Luo WW, Sun BZ, Ouyang CY (2020) Interfacial properties and Li-ion dynamics between Li3OCl solid electrolyte and Li metal anode for all solid state Li metal batteries from first principles study. Electrochim Acta 334:135622

    CAS  Google Scholar 

  273. Yoshikawa K, Yamamoto T, Sugumar MK, Motoyama M, Iriyama Y (2021) Room temperature operation and high cycle stability of an all-solid-state lithium battery fabricated by cold pressing using soft Li2OHBr solid electrolyte. Energy Fuels 35:12581–12587

    CAS  Google Scholar 

  274. Serejo JAS, Pereira JS, Mouta R, Rego LGC (2021) Sluggish anion transport provides good kinetic stability to the anhydrous anti-perovskite solid electrolyte Li3OCl. Phys Chem Chem Phys 23:6964–6973

    CAS  PubMed  Google Scholar 

  275. Rajagopal R, Subramanian Y, Hwang G, Jung YJ, Ryu KS (2022) Improved ionic conductivity and structural transition from (nLi2S-LiI)-(P2S5) solid solutions to LixP2SyI crystalline electrolytes. J Alloys and Comp 900:163435

    CAS  Google Scholar 

  276. Hong HY-P (1978) Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater Res Bull 13:117–124

    CAS  Google Scholar 

  277. Alpen UV, Bell MF, Wichelhaus W (1978) Ionic conductivity of Li14Zn(GeO4)4 (LISICON). Electrochim Acta 23:1395–1397

    Google Scholar 

  278. Du YA, Holzwarth NAW (2007) Li ion diffusion mechanisms in the crystalline electrolyte γ-Li3PO4. J Electrochem Soc 154:A999–A1004

    CAS  Google Scholar 

  279. Sun Y-Q, Luo X-T, Zhu Y-S, Liao X-J, Li C-J (2022) Li3PO4 electrolyte of high conductivity for all-solid-state lithium battery prepared by plasma spray. J Eur Ceram Soc 42:4239–4247

    CAS  Google Scholar 

  280. Rodger AR, Kuwano J, West AR (1985) Li+ ion conducting γ solid solutions in the systems Li4XO4-Li3YO4: X=Si, Ge, Ti; Y=P, As, V; Li4XO4-LiZO2: Z=Al, Ga, Cr and Li4GeO4-Li2CaGeO4. Solid State Ionics 15:185–198

    CAS  Google Scholar 

  281. Burmakin EI, Voronin VI, Shekhtman GS (2003) Crystalline structure and electroconductivity of solid electrolytes Li3.75Ge0.75V0.25O4 and Li3.7Ge0.85W0.15O4. Russ J Electrochem 39:1124–1129

    CAS  Google Scholar 

  282. Deng Y, Eames C, Fleutot B, David R, Chotard JN, Suard E, Masquelier C, Islam MS (2017) Enhancing the Lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect. ACS Appl Mater Interfaces 9:7050–7058

    CAS  PubMed  Google Scholar 

  283. Zhao G, Suzuki K, Okumura T, Takeuchi T, Hirayama M, Kanno R (2022) Extending the frontiers of lithium-ion conducting oxides: development of multicomponent materials with γ-Li3PO4-type structures. Chem Mater 34:3948–3959

    CAS  Google Scholar 

  284. Bruce PG, West AR (1983) The A-C conductivity of polycrystalline LISICON, Li2+2xZn1−xGeO4, and a model for intergranular constriction resistances. J Electrochem Soc 130:662–669

    CAS  Google Scholar 

  285. Okumura T, Taminato S, Takeuchi T, Kobayashi H (2018) Minimizing the grain boundary resistance of Li-ion-conducting oxide electrolyte by controlling liquid-phase formation during sintering. ACS Appl Energy Mater 1:6303–6311

    Google Scholar 

  286. Robertson AD, West AR, Ritchie AG (1997) Review of crystalline lithium-ion conductors suitable for high temperature battery applications. Solid State Ionics 104:1–11

    CAS  Google Scholar 

  287. Okumura T, Takeuchi T, Kobayashi H (2021) All-solid-state batteries with LiCoO2-type electrodes: realization of an impurity-free interface by utilizing a cosinterable Li3.5Ge0.5V0.5O4 electrolyte. ACS Appl Energy Mater 4:30–34

    CAS  Google Scholar 

  288. Okumura T, Taminato S, Miyazaki Y, Kitamura M, Saito T, Takeuchi T, Kobayashi H (2020) LISICON-based amorphous oxide for bulk-type all-solid-state lithium-ion battery. ACS Appl Energy Mater 3:3220–3229

    CAS  Google Scholar 

  289. Nagata H, Akimoto J (2021) All-oxide solid-state lithium-ion battery employing 50Li2SO4–50Li2CO3 glass electrolyte. J Power Sources 491:229620

    CAS  Google Scholar 

  290. Kato T, Yoshida R, Yamamoto K, Hirayama T, Motoyama M, West WC, Iriyama Y (2016) Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries. J of Power Sources 325:584–590

    CAS  Google Scholar 

  291. Nagata H, Akimoto J (2019) Improvement of inter-particle contact in positive electrodes using the composite deformable solid electrolyte in an oxide-type all-solid-state Lithium ion battery. Chem Lett 48:891–893

    CAS  Google Scholar 

  292. Nagata H, Akimoto J (2021) Excellent deformable oxide glass electrolytes and oxide-type all-solid-state Li2S–Si batteries employing these electrolytes. ACS Appl Mater Interfaces 13:35785–35794

    CAS  PubMed  Google Scholar 

  293. Souquet JL (1981) Ionic transport in amorphous solid electrolytes. Annu Rev Mater Sci 11:211–231

    CAS  Google Scholar 

  294. Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1993) Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J Power Sources 43(1–3):103–110

    CAS  Google Scholar 

  295. Reddy MV, Julien CM, Mauger A, Zaghib K (2020) Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: a review. Nanomaterials 10:1606

    CAS  PubMed Central  Google Scholar 

  296. Kulkarni AR, Maiti HS, Paul A (1984) Fast ion conducting lithium glasses. Bull Mater Sci 6:201–221

    CAS  Google Scholar 

  297. Meikhall MS, Gohar IA, Megahed AA (1993) Lithium borosilicate glasses as electrolyte for solid state batteries. J Phys D Appl Phys 26:1125–1129

    Google Scholar 

  298. Kang ET, Kim MJ, Kim JD (2007) Relationship between ionic conductivity and composition of Li2O-ZrO2-SiO2 glasses determined from mixture design. J Korean Ceram Soc 44:219–223

    CAS  Google Scholar 

  299. Xia H, Wang HL, Xiao W, Lai MO, Lu L (2009) Thin film Li electrolytes for all-solid-state micro-batteries. Int J Surf Sci Eng 3:23–43

    CAS  Google Scholar 

  300. Nagao K, Shigeno M, Inoue A, Deguchi M, Kowada H, Hotehama C, Sakuda A, Tatsumisago M, Hayashi A (2022) Lithium-ion conductivity and crystallization temperature of multicomponent oxide glass electrolytes. Journal of Non-Crystalline Solids: X 14:100089

    CAS  Google Scholar 

  301. Sasaki S, Ono A, Suzuki A, Takei M, Suzuki K, Hirayama M, Kanno R (2022) Combinatorial synthesis and ionic conductivity of amorphous oxynitrides in a pseudo-ternary Li3PO4-Li4SiO4-LiAlO2 system. Electrochemistry 90:037008

    CAS  Google Scholar 

  302. Tron A, Nosenko A, Park YD, Mun J (2017) Synthesis of the solid electrolyte Li2O–LiF–P2O5 and its application for lithium-ion batteries. Solid State Ionics 308:40–45

    CAS  Google Scholar 

  303. Tron A, Nosenko A, Park YD, Mun J (2019) The solid electrolytes Li2O–LiF–Li2WO4–B2O3 with enhanced ionic conductivity for lithium-ion battery. J Ind Eng Chem 73:62–66

    CAS  Google Scholar 

  304. Adhwaryu VA, Kanchan DK (2022) Effect of lithium iodide on transport phenomenon in lithium borophosphate glass electrolyte. J Non-Cryst Solids 583:121474

    CAS  Google Scholar 

  305. Kaup K, Bazak JD, Vajargah SH, Wu X, Kulisch J, Goward GR, Nazar LF (2020) A Lithium oxythioborosilicate solid electrolyte glass with superionic conductivity. Adv Energy Mater 10:1902783

    CAS  Google Scholar 

  306. Lacivita V, Artrith N, Ceder G (2018) Structural and compositional factors that control the Li-Ion conductivity in LiPON electrolytes. Chem Mater 30:7077–7090

    CAS  Google Scholar 

  307. Lee S, Jung S, Yang S, Lee J-H, Shin H, Kim J, Park S (2022) Revisiting the LiPON/Li thin film as a bifunctional interlayer for NASICON solid electrolyte-based lithium metal batteries. Appl Surf Sci 586:152790

    CAS  Google Scholar 

  308. Ko J, Yoon YS (2022) Lithium phosphorus oxynitride thin films for rechargeable lithium batteries: applications from thin-film batteries as micro batteries to surface modification for large-scale batteries. Ceram Int 48:10372–10390

    CAS  Google Scholar 

  309. Fleutot B, Pecquenard B, Martinez H, Levasseur A (2012) Thorough study of the local structure of LiPON thin films to better understand the influence of a solder-reflow type thermal treatment on their performances. Solid State Ionics 206:72–77

    CAS  Google Scholar 

  310. Ko J, Yoon YS (2020) Influence of process conditions on structural and electrochemical properties of lithium phosphorus oxynitride thin films. Ceram Int 46:20623–20632

    CAS  Google Scholar 

  311. Le Van L, -Jodin, A. Claudel, C. Secouard, F. Sabary, J.-P. Barnes, S. Martin, (2018) Role of the chemical composition and structure on the electrical properties of a solid state electrolyte: case of a highly conductive LiPON. Electrochim Acta 259:742–751

    Google Scholar 

  312. Lacivita V, Westover AS, Kercher A, Phillip ND, Yang G, G. Veith … and N.J. Dudney, (2018) Resolving the amorphous structure of lithium phosphorus oxynitride (Lipon). J Am Chem Soc 140(35):11029–11038

    CAS  PubMed  Google Scholar 

  313. Famprikis T, Galipaud J, Clemens O, Pecquenard B, Le Cras F (2019) Composition dependence of ionic conductivity in LiSiPO(N) thin-film electrolytes for solid-state batteries. ACS Appl Energy Mater 2:4782–4791

    CAS  Google Scholar 

  314. Wu S, Xiao R, Li H, Chen L (2022) Ionic conductivity of LiSiON and the effect of amorphization/heterovalent doping on Li+ diffusion. Inorganics 10:45

    CAS  Google Scholar 

  315. Na D, Lee B, Yoon B, Seo I (2020) A solid-state thin-film electrolyte, lithium silicon oxynitride, deposited by using RF sputtering for thin-film batteries. J Korean Phys Soc 76:855–859

    CAS  Google Scholar 

  316. Wu T, Dai W, Ke M, Huang Q, Lu L (2021) All-solid-state thin film μ-batteries for microelectronics. Advanced Science 8:2100774

    CAS  PubMed Central  Google Scholar 

  317. Ziebert C, Knorr A, Thiel N, Fischer J, Kohler R, Pröll J, Pfleging W, Ulrich S, Seifert HJ (2011) Combinatorial approach for the development of solid state electrolytes in the system Li-V-Si-O for thin film Li-ion batteries. LiBD-5– Electrode materials - Arcachon, France 12–17 June : O45

  318. Yada C, Iriyama Y, Abe T, Kikuchi K, Ogumi Z (2006) Amorphous Li–V–Si–O thin films as high-voltage negative electrode materials for thin-film rechargeable lithium-ion batteries. J of the Electrochem Society 153:A1148–A1153

    CAS  Google Scholar 

  319. Jetybayeva A, Uzakbaiuly B, Mukanova A, Myung S-T, Bakenov Z (2021) Recent advancements in solid electrolytes integrated into all-solid-state 2D and 3D lithium-ion microbatteries. J Mater Chem A 9:15140–15178

    CAS  Google Scholar 

  320. Salot R, Martin S, Oukassi S, Bedjaoui M, Ubrig J (2009) Microbattery technology overview and associated multilayer encapsulation process. Appl Surf Sci 256 Supplement:S54-S57

  321. Westover AS, Dudney NJ, Sacci RL, Kalnaus S (2019) Deposition and confinement of Li metal along an artificial Lipon-Lipon interface. ACS Energy Lett 4:651–655

    CAS  Google Scholar 

  322. Cao D, Sun X, Li Q, Natan A, Xiang P, Zhu H (2020) Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 3:57–94

    Google Scholar 

  323. Du M, Liao K, Lu Q, Shao Z (2019) Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy Environ Sci 12:1780–1804

    CAS  Google Scholar 

  324. Song J, Jacke S, Becker D, Hausbrand R, Jaegermann W (2011) Stabilization of thin film LiCoO2 electrode by LiPON coating. Electrochemical and Solid State Letters 14:A11–A13

    CAS  Google Scholar 

  325. Kim Y, Veith GM, Nanda J, Unocic RR, Chi M, Dudney NJ (2011) High voltage stability of LiCoO2 particles with a nano-scale Lipon coating. Electrochim Acta 56:6573–6580

    CAS  Google Scholar 

  326. Martha SK, Nanda J, Kim Y, Unocic RR, Pannala S, Dudney NJ (2013) Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li 1.2Mn0.525Ni0.175Co0.1O2. J Mater Chem A 1:5587–5595

    CAS  Google Scholar 

  327. Yang S-Y, Shadike Z, Wang W-W, Yue X-Y, Xia H-Y, Bak S-M, Du Y-H, Li H, Fu Z-W (2022) An ultrathin solid-state electrolyte film coated on LiNi0.8Co0.1Mn0.1O2 electrode surface for enhanced performance of lithium-ion batteries. Energy Storage Materials 45:1165–1174

    Google Scholar 

  328. Yu T, Yang X, Yang R, Bai X, Xu G, Zhao S, Duan Y, Wu Y, Wang J (2021) Progress and perspectives on typical inorganic solid-state electrolytes. J Alloy Compd 885:161013

    CAS  Google Scholar 

Download references

Acknowledgements

S. Kundu would like to acknowledge PBC for granting PBC postdoctoral fellowship; the authors also appreciate the support of the research by the Israel National Research Centre for Electrochemical Propulsion (INREP) and the Grand Technion Energy Program (GTEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yair Ein-Eli.

Additional information

This Review is dedicated to Prof. Doron Aurbach’s 70th birthday. Doron massively promoted the science and technology associated with portable power sources, water desalination and basic electrochemistry in an immense energy and enthusiasm along his remarkable career. Doron educated and served as an advisor to many generations of Israeli and international scholars. We wish Doron to continue energizing the community, as he did thus far. Cheers!

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Kraytsberg, A. & Ein-Eli, Y. Recent development in the field of ceramics solid-state electrolytes: I—oxide ceramic solid-state electrolytes. J Solid State Electrochem (2022). https://doi.org/10.1007/s10008-022-05206-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-022-05206-x