Skip to main content

Partially carbonized tungsten oxide as electrode material for asymmetric supercapacitors

Abstract

Synthesis of partially carbonized tungsten oxide employing a simple, one-step, and scalable in-situ reduction/carbonization process is reported along with its electrochemical performance as electrode material in an asymmetric supercapacitor. The synthesis produces a WO2/W2C composite where the carbide part is introduced to enhance the electronic conductivity of redox-active tungsten oxide. Electrochemical performance and charge storage mechanism of WO2/W2C heterostructure is elucidated in detail. The electrode material exhibits compelling areal capacitance within −0.3 to −1 V window in half-cell configuration. Notably, both surface-controlled and diffusion-controlled processes govern the charge storage behavior, with the former dominating at higher scan rates. An asymmetric supercapacitor assembled with WO2/W2C composite as a negative electrode and activated charcoal (AC) as a positive electrode exhibits good cycling stability within a stable voltage window of 0.2 to 1.4 V and could deliver an energy density of 0.6 mWh/cm3 at a power density of 9 mW/cm3 in aqueous electrolyte. This study thus provides a fundamental understanding of the charge storage mechanism in WO2/W2C composite electrode which is required for realizing futuristic energy storage devices with low cost but efficient electroactive materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Miller John R, Simon P (2008) Electrochemical capacitors for energy management. Science. https://doi.org/10.1126/science.1158736

    Article  PubMed  Google Scholar 

  2. Simon P, Gogotsi Y (2020) Perspectives for electrochemical capacitors and related devices. Nat Mater. https://doi.org/10.1038/s41563-020-0747-z

    Article  PubMed  Google Scholar 

  3. Chen Z, Qin Y, Weng D, Xiao Q, Peng Y, Wang X, Li H, Wei F, Lu Y (2009) Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv Funct Mater. https://doi.org/10.1002/adfm.200900971

    Article  Google Scholar 

  4. Mai L-Q, Yang F, Zhao Y-L, Xu X, Xu L, Luo Y-Z (2011) Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun. https://doi.org/10.1038/ncomms1387

    Article  PubMed  Google Scholar 

  5. Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater. https://doi.org/10.1002/adma.201301932

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater. https://doi.org/10.1002/aenm.201300816

    Article  Google Scholar 

  7. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. https://doi.org/10.1039/C1CS15060J

    Article  PubMed  Google Scholar 

  8. Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev. https://doi.org/10.1021/acs.chemrev.8b00252

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kumar A, Rathore HK, Sarkar D, Shukla A (2021) Nanoarchitectured transition metal oxides and their composites for supercapacitors. Electrochem Sci Adv. https://doi.org/10.1002/elsa.202100187

    Article  Google Scholar 

  10. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y (2020) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des. https://doi.org/10.1016/j.matdes.2019.108199

    Article  Google Scholar 

  11. Shinde PA, Jun SC (2020) Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage. Chemsuschem. https://doi.org/10.1002/cssc.201902071

    Article  PubMed  Google Scholar 

  12. Zhang G, Xiao X, Li B, Gu P, Xue H, Pang H (2017) Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J Mater Chem A. https://doi.org/10.1039/C7TA02454A

    Article  Google Scholar 

  13. Barik R, Yadav AK, Jha SN, Bhattacharyya D, Ingole PP (2021) Two-dimensional tungsten oxide/selenium nanocomposite fabricated for flexible supercapacitors with higher operational voltage and their charge storage mechanism. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.0c15818

    Article  PubMed  Google Scholar 

  14. Shinde PA, Seo Y, Ray C, Jun SC (2019) Direct growth of WO3 nanostructures on multi-walled carbon nanotubes for high-performance flexible all-solid-state asymmetric supercapacitor. Electrochim Acta. https://doi.org/10.1016/j.electacta.2019.03.159

    Article  Google Scholar 

  15. Huang Y, Li Y, Zhang G, Liu W, Li D, Chen R, Zheng F, Ni H (2019) Simple synthesis of 1D, 2D and 3D WO3 nanostructures on stainless steel substrate for high-performance supercapacitors. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.11.212

    Article  Google Scholar 

  16. Qiu M, Sun P, Shen L, Wang K, Song S, Yu X, Tan S, Zhao C, Mai W (2016) WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. J Mater Chem A. https://doi.org/10.1039/C6TA00237D

    Article  Google Scholar 

  17. Wang F, Zhan X, Cheng Z, Wang Z, Wang Q, Xu K, Safdar M, He J (2015) Tungsten oxide@ polypyrrole core–shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. Small. https://doi.org/10.1002/smll.201402340

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sarkar D, Mukherjee S, Pal S, Sarma DD, Shukla A (2018) Hexagonal WO3 nanorods as ambipolar electrode material in asymmetric WO3//WO3/MnO2 supercapacitor. J Electrochem Soc. https://doi.org/10.1149/2.0451810jes

    Article  Google Scholar 

  19. Xing L-L, Huang K-J, Fang L-X (2016) Preparation of layered graphene and tungsten oxide hybrids for enhanced performance supercapacitors. Dalton Trans. https://doi.org/10.1039/C6DT03719D

    Article  PubMed  Google Scholar 

  20. Zhang H, Liu J, Tian Z, Ye Y, Cai Y, Liang C, Terabe K (2016) A general strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode. Carbon. https://doi.org/10.1016/j.carbon.2016.01.047

    Article  Google Scholar 

  21. Zhong Y, Xia X, Shi F, Zhan J, Tu J, Fan HJ (2016) Transition metal carbides and nitrides in energy storage and conversion. Adv Sci. https://doi.org/10.1002/advs.201500286

    Article  Google Scholar 

  22. Soares DM, Vicentini R, Peterlevitz AC, Rodella CB, da Silva LM, Zanin H (2019) Tungsten oxide and carbide composite synthesized by hot filament chemical deposition as electrodes in aqueous-based electrochemical capacitors. J Energy Storage. https://doi.org/10.1016/j.est.2019.100905

    Article  Google Scholar 

  23. Cevik E, Gunday ST, Iqbal A, Akhtar S, Bozkurt A (2022) Synthesis of hierarchical multilayer N-doped Mo2C@MoO3 nanostructure for high-performance supercapacitor application. J Energy Storage. https://doi.org/10.1016/j.est.2021.103824

    Article  Google Scholar 

  24. Das D, Das A, Reghunath M, Nanda KK (2017) Phosphine-free avenue to Co2P nanoparticle encapsulated N, P co-doped CNTs: a novel non-enzymatic glucose sensor and an efficient electrocatalyst for oxygen evolution reaction. Green Chem. https://doi.org/10.1039/C7GC00084G

    Article  Google Scholar 

  25. Das D, Santra S, Nanda KK (2018) In situ fabrication of a nickel/molybdenum carbide-anchored N-doped graphene/CNT hybrid: an efficient (pre)catalyst for OER and HER. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b09941

    Article  PubMed  Google Scholar 

  26. Lewandowski M, Szymańska-Kolasa A, Sayag C, Beaunier P, Djéga-Mariadassou G (2014) Atomic level characterization and sulfur resistance of unsupported W2C during dibenzothiophene hydrodesulfurization. Classical kinetic simulation of the reaction. Appl Catal B: Environ. https://doi.org/10.1016/j.apcatb.2013.08.011

    Article  Google Scholar 

  27. Stellwagen DR, Bitter JH (2015) Structure–performance relations of molybdenum- and tungsten carbide catalysts for deoxygenation. Green Chem. https://doi.org/10.1039/C4GC01831A

    Article  Google Scholar 

  28. Kumar A, Sarkar D, Mukherjee S, Patil S, Sarma DD, Shukla A (2018) Realizing an asymmetric supercapacitor employing carbon nanotubes anchored to Mn3O4 cathode and Fe3O4 anode. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b16639

    Article  PubMed  Google Scholar 

  29. Lesiak B, Kövér L, Tóth J, Zemek J, Jiricek P, Kromka A, Rangam N (2018) C sp2/sp3 hybridisations in carbon nanomaterials – XPS and (X)AES study. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.04.269

    Article  Google Scholar 

  30. Vasilopoulou M, Soultati A, Georgiadou DG, Stergiopoulos T, Palilis LC, Kennou S, Stathopoulos NA, Davazoglou D, Argitis P (2014) Hydrogenated under-stoichiometric tungsten oxide anode interlayers for efficient and stable organic photovoltaics. J Mater Chem A. https://doi.org/10.1039/C3TA13975A

    Article  Google Scholar 

  31. Pal B, Yang S, Ramesh S, Thangadurai V, Jose R (2019) Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv. https://doi.org/10.1039/C9NA00374F

    Article  Google Scholar 

  32. Jana M, Saha S, Khanra P, Samanta P, Koo H, Chandra Murmu N, Kuila T (2015) Non-covalent functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application as a supercapacitor electrode material. J Mater Chem A. https://doi.org/10.1039/C4TA07009G

    Article  Google Scholar 

  33. Chen P-C, Shen G, Shi Y, Chen H, Zhou C (2010) Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano. https://doi.org/10.1021/nn100856y

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dong X, Jin H, Wang R, Zhang J, Feng X, Yan C, Chen S, Wang S, Wang J, Lu J (2018) High volumetric capacitance, ultralong life supercapacitors enabled by Waxberry-derived hierarchical porous carbon materials. Adv Energy Mater. https://doi.org/10.1002/aenm.201702695

    Article  Google Scholar 

  35. Huang Z-H, Song Y, Feng D-Y, Sun Z, Sun X, Liu X-X (2018) High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano. https://doi.org/10.1021/acsnano.8b00621

    Article  PubMed  PubMed Central  Google Scholar 

  36. Iamprasertkun P, Tanggarnjanavalukul C, Krittayavathananon A, Khuntilo J, Chanlek N, Kidkhunthod P, Sawangphruk M (2017) Insight into charge storage mechanisms of layered MnO2 nanosheets for supercapacitor electrodes: in situ electrochemical X-ray absorption spectroscopy. Electrochim Acta. https://doi.org/10.1016/j.electacta.2017.08.002

    Article  Google Scholar 

  37. Sarkar D, Das D, Das S, Kumar A, Patil S, Nanda KK, Sarma DD, Shukla A (2019) Expanding interlayer spacing in MoS2 for realizing an advanced supercapacitor. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.9b00983

    Article  Google Scholar 

  38. Hwang S-K, Patil SJ, Chodankar NR, Huh YS, Han Y-K (2022) An aqueous high-performance hybrid supercapacitor with MXene and polyoxometalates electrodes. Chem Eng J. https://doi.org/10.1016/j.cej.2021.131854

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhu Y, Peng L, Chen D, Yu G (2016) Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. https://doi.org/10.1021/acs.nanolett.5b04610

    Article  PubMed  Google Scholar 

  40. Chidembo AT, Aboutalebi SH, Konstantinov K, Jafta CJ, Liu HK, Ozoemena KI (2014) In situ engineering of urchin-like reduced graphene oxide–Mn2O3–Mn3O4 nanostructures for supercapacitors. RSC Adv. https://doi.org/10.1039/C3RA44973D

    Article  Google Scholar 

  41. Liang J, Chen S, Xie M, Wang Y, Guo X, Guo X, Ding W (2014) Expeditious fabrication of flower-like hierarchical mesoporous carbon superstructures as supercapacitor electrode materials. J Mater Chem A. https://doi.org/10.1039/C4TA03209H

    Article  Google Scholar 

  42. Kandambeth S, Jia J, Wu H, Kale VS, Parvatkar PT, Czaban-Jóźwiak J, Zhou S, Xu X, Ameur ZO, Abou-Hamad E (2020) Covalent organic frameworks as negative electrodes for high-performance asymmetric supercapacitors. Adv Energy Mater. https://doi.org/10.1002/aenm.202001673

    Article  Google Scholar 

  43. Mao N, Chen W, Meng J, Li Y, Zhang K, Qin X, Zhang H, Zhang C, Qiu Y, Wang S (2018) Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification. J Power Sources. https://doi.org/10.1016/j.jpowsour.2018.07.022

    Article  Google Scholar 

  44. Veerasubramani GK, Krishnamoorthy K, Pazhamalai P, Kim SJ (2016) Enhanced electrochemical performances of graphene based solid-state flexible cable type supercapacitor using redox mediated polymer gel electrolyte. Carbon. https://doi.org/10.1016/j.carbon.2016.05.008

    Article  Google Scholar 

  45. Wang S, Zhu J, Shao Y, Li W, Wu Y, Zhang L, Hao X (2017) Three-dimensional MoS2@ CNT/RGO network composites for high-performance flexible supercapacitors. Chem Eur J. https://doi.org/10.1002/chem.201605465

    Article  PubMed  Google Scholar 

  46. Zhou J, Chen N, Ge Y, Zhu H, Feng X, Liu R, Ma Y, Wang L, Hou W (2018) Flexible all-solid-state micro-supercapacitor based on Ni fiber electrode coated with MnO2 and reduced graphene oxide via electrochemical deposition. Sci China Mater. https://doi.org/10.1007/s40843-017-9168-9

    Article  Google Scholar 

  47. Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem. https://doi.org/10.1007/s10008-014-2510-3

    Article  Google Scholar 

Download references

Acknowledgements

H.K.R acknowledges Council of Scientific and Industrial Research (CSIR), Government of India, for the Research Fellowship (File no. 09/964(0032)/2020-EMR-I). D.S. acknowledges support from the Science and Engineering Research Board (SERB), Government of India, through the project SRG/2019/001211 and ISRO-RAC-S MNIT Jaipur through project RAC-S/PRO/21-22/02.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debasish Sarkar or Ashok Shukla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1541 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rathore, H.K., Hariram, M., Awasthi, K. et al. Partially carbonized tungsten oxide as electrode material for asymmetric supercapacitors. J Solid State Electrochem 26, 2039–2048 (2022). https://doi.org/10.1007/s10008-022-05196-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05196-w

Keywords

  • Partially carbonized tungsten oxide
  • Composite heterostructures
  • Charge-storage mechanism
  • Surface-controlled redox capacitance
  • Aqueous asymmetric supercapacitor