Skip to main content

Advertisement

Log in

Electrochemical self-signal switch for determination of KRAS gene employing riboflavin 5’-adenosine diphosphate functionalized MoS2 nanosheets

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An electrochemical self-signal switch was designed for direct sensing of KRAS gene associated with lung cancer based on riboflavin 5’-adenosine diphosphate (RADP) functionalized MoS2 nanosheets obtained by simple ultrasonication approach. RADP displayed favorable dispersive capacity for acquiring highly dispersed MoS2 nanosheets in aqueous medium. The obtained RADP/MoS2 nanocomposite demonstrated outstanding electrochemical redox activity and was adopted as the platform for the self-signal sensing of DNA immobilization and hybridization. The self-signal decreased when the probe ssDNA was immobilized on the acquired RADP/MoS2 nanocomposite by virtue of the noncovalent π–π interaction between the conjugated nanocomposite and nucleic acid bases. After the hybridization, the formed dsDNA could be released off the surface of the conjugated nanocomposite as a result of the base burying, accompanied with the regeneration of the self-redox signal. Electrochemical self-signal response increased with the target DNA concentration from 1.0 × 10−18 to 1.0 × 10−8 mol/L, and a detection limit of 2.7 × 10−19 mol/L was evaluated. Simultaneously, the developed DNA determination interface manifested remarkable specificity and superior steadiness. The proposed detection scheme is worth to popularize and has the potentiality for the implementation of various morbigenous gene without complex label steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salgia R, Pharaon R, Mambetsariev I, Nam A, Sattler M (2021) The improbable targeted therapy: KRAS as an emerging target in non-small cell lung cancer (NSCLC). Cell Rep Med 2:100186

    Article  PubMed  PubMed Central  Google Scholar 

  2. Meng MM, Zhong KY, Jiang T, Liu ZQ, Kwan HY, Su T (2021) The current understanding on the impact of KRAS on colorectal cancer. Biomed Pharmacother 140:111717

    Article  CAS  PubMed  Google Scholar 

  3. Korzeniecki C, Priefer R (2021) Targeting KRAS mutant cancers by preventing signaling transduction in the MAPK pathway. Eur J Med Chem 211:113006

    Article  CAS  PubMed  Google Scholar 

  4. Li ZB, Xu HW, Li SQ, Wu SJ, Mi XM (2021) Zettomole electrochemical HIV DNA detection using 2D DNA-Au nanowire structure, hemin/G-quadruplex and polymerase chain reaction multi-signal synergistic amplification. Anal Chim Acta 1159:338428

    Article  CAS  PubMed  Google Scholar 

  5. Luo SH, Zhang Y, Huang GN, Situ B, Ye XY, Tao ML, Huang YF, Li B, Jiang XJ, Wang Q, Zheng L (2021) An enzyme-free amplification strategy for sensitive assay of circulating tumor DNA based on wheel-like catalytic hairpin assembly and frame hybridization chain reaction. Sens Actuators B-Chem 338:129857

    Article  CAS  Google Scholar 

  6. Otero F, Shortall K, Salaj-Kosla U, Tofail SAM, Magner E (2021) Electrochemical biosensor for the detection of a sequence of the TP53 gene using a methylene blue labelled DNA probe. Electrochim Acta 388:138642

    Article  CAS  Google Scholar 

  7. Wang YQ, Hsine Z, Sauriat-Dorizon H, Mlika R, Korri-Youssoufi H (2020) Structural and electrochemical studies of functionalization of reduced graphene oxide with alkoxyphenylporphyrin mono- and tetra-carboxylic acid: application to DNA sensors. Electrochim Acta 357:136852

    Article  CAS  Google Scholar 

  8. Chen M, Wu DM, Tu SH, Yang CY, Chen DJ, Xu Y (2021) CRISPR/Cas9 cleavage triggered ESDR for circulating tumor DNA detection based on a 3D graphene/AuPtPd nanoflower biosensor. Biosens Bioelectron 173:112821

    Article  CAS  Google Scholar 

  9. Han S, Liu WY, Zheng M, Wang RS (2020) Label-free and ultrasensitive electrochemical DNA biosensor based on urchinlike carbon nanotube-gold nanoparticle nanoclusters. Anal Chem 92:4780–4787

    Article  CAS  PubMed  Google Scholar 

  10. Kıransan KD, Topcu E (2020) Conducting polymer-reduced graphene oxide sponge electrode for electrochemical detection based on DNA hybridization. ACS Appl Nano Mater 3:5449–5462

    Article  Google Scholar 

  11. Chen KC, Zhao HL, Wang ZX, Lan MB (2021) A novel signal amplification label based on AuPt alloy nanoparticles supported by high-active carbon for the electrochemical detection of circulating tumor DNA. Anal Chim Acta 1169:338628

    Article  CAS  PubMed  Google Scholar 

  12. Chowdhury T, Sadler EC, Kempa TJ (2020) Progress and prospects in transition-metal dichalcogenide research beyond 2D. Chem Rev 120:12563–12591

    Article  CAS  PubMed  Google Scholar 

  13. Liang QJ, Zhang Q, Zhao XX, Liu MZ, Wee ATS (2021) Defect engineering of two-dimensional transition-metal dichalcogenides: applications, challenges, and opportunities. ACS Nano 15:2165–2181

    Article  CAS  PubMed  Google Scholar 

  14. Swain G, Sultana S, Parida K (2021) A review on vertical and lateral heterostructures of semiconducting 2D-MoS2 with other 2D materials: a feasible perspective for energy conversion. Nanoscale 13:9908–9944

    Article  CAS  PubMed  Google Scholar 

  15. Yang SG, Li DJ, Chen L, Zhou XJ, Fu LW, You YL, You ZW, Kang L, Li MQ, He CL (2021) Coupling metal organic frameworks with molybdenum disulfide nanoflakes for targeted cancer theranostics. Biomater Sci 9:3306–3318

    Article  CAS  PubMed  Google Scholar 

  16. Yan Q, Fan F, Sun C, El-Khouly ME, Liu HF, Zheng YL, Zhang B, Liu G, Chen Y (2021) MoS2 nanosheets chemically modified with metal phthalocyanine via mussel-inspired chemistry for multifunctional memristive devices. J Mater Chem C 9:6930–6936

    Article  CAS  Google Scholar 

  17. Selvam SP, Chinnadayyala SR, Cho S (2021) Electrochemical nanobiosensor for early detection of rheumatoid arthritis biomarker: anti-cyclic citrullinated peptide antibodies based on polyaniline (PANI)/MoS2-modified screen-printed electrode with PANI-Au nanomatrix-based signal amplification. Sens Actuators B-Chem 333:129570

    Article  CAS  Google Scholar 

  18. Fang X, Zeng ZR, Li QJ, Liu Y, Chu WH, Maiyalagan T, Mao S (2021) Ultrasensitive detection of disinfection byproduct trichloroacetamide in drinking water with Ag nanoprism@MoS2 heterostructure-based electrochemical sensor. Sens Actuators B-Chem 332:12952

    Google Scholar 

  19. Asefifeyzabadi N, Alkhaldi R, Qamar AZ, Pater AA, Patwardhan M, Gagnon KT, Talapatra S, Shamsi MH (2021) Label-free electrochemical detection of CGG repeats on inkjet printable 2D layers of MoS2. ACS Appl Mater Interfaces 12:52156–52165

    Article  Google Scholar 

  20. Zhao H, Du X, Dong H, Jin DL, Tang F, Liu Q, Wang P, Chen L, Zhao PQ, Li YY (2021) Electrochemical immunosensor based on Au/Co-BDC/MoS2 and DPCN/MoS2 for the detection of cardiac troponin I. Biosens Bioelectron 175:112883

    Article  CAS  PubMed  Google Scholar 

  21. Selvam SP, Hansa M, Yun K (2020) Simultaneous differential pulse voltammetric detection of uric acid and melatonin based on a self-assembled Au nanoparticle-MoS2 nanoflake sensing platform. Sens Actuators B-Chem 307:127683

    Article  Google Scholar 

  22. Liu FM, Nie J, Qin YN, Yin W, Hou CJ, Huo DQ, He B, Xia TC, Fa HB (2017) A biomimetic sensor based on specific receptor ETBD and Fe3O4@Au/MoS2/GN for signal enhancement shows highly selective electrochemical response to ultra-trace lead (II). J Solid State Electrochem 21:3257–3268

    Article  CAS  Google Scholar 

  23. Lin YL, Xiong CW, Shi J, Zhang JJ, Wang XH (2021) Electrochemical immunosensor based on Pd@Pt/MoS2-Gr for the sensitive detection of CEA. J Solid State Electrochem 25:2075–2085

    Article  CAS  Google Scholar 

  24. Gui JC, Han L, Du CX, Yu XN, Hu K, Li LH (2021) An efficient label-free immunosensor based on ce-MoS2/AgNR composites and screen-printed electrodes for PSA detection. J Solid State Electrochem 25:973–982

    Article  CAS  Google Scholar 

  25. Zhu CF, Zeng ZY, Li H, Li F, Fan CH, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001

    Article  CAS  PubMed  Google Scholar 

  26. Kubota LT, Gorton L (1999) Electrochemical investigations of the reaction mechanism and kinetics between NADH and riboflavin immobilised on amorphous zirconium phosphate. J Solid State Electrochem 3:370–379

    Article  CAS  Google Scholar 

  27. Bai J, Ndamanisha JC, Liu L, Yang L, Guo LP (2010) Voltammetric detection of riboflavin based on ordered mesoporous carbon modified electrode. J Solid State Electrochem 14:2251–2256

    Article  CAS  Google Scholar 

  28. Hu YW, Yang T, Wang XX, Jiao K (2010) Highly sensitive indicator-free impedance sensing of DNA hybridization based on poly(m-aminobenzenesulfonic acid)/TiO2 nanosheet membranes with pulse potentiostatic method preparation. Chem Eur J 16:1992–1999

    Article  CAS  PubMed  Google Scholar 

  29. Zhang W, Dai ZC, Liu X, Yang JM (2018) High-performance electrochemical sensing of circulating tumor DNA in peripheral blood based on poly-xanthurenic acid functionalized MoS2 nanosheets. Biosens Bioelectron 105:116–120

    Article  CAS  PubMed  Google Scholar 

  30. Huang KJ, Liu YJ, Zhang JZ, Liu YM (2015) A sequence-specific DNA electrochemical sensor based on acetylene black incorporated two-dimensional CuS nanosheets and gold nanoparticles. Sens Actuators B-Chem 209:570–578

    Article  CAS  Google Scholar 

  31. Avelino KYPS, Frias IAM, Lucena-Silva N, Gomes RG, de Melo CP, Oliveira MDL, Andrade CAS (2016) Attomolar electrochemical detection of the BCR/ABL fusion gene based on an amplifying self-signal metal nanoparticle-conducting polymer hybrid composite. Colloids Surf B: Biointerfaces 148:576–584

    Article  CAS  PubMed  Google Scholar 

  32. Gong QJ, Wang YD, Yang HY (2017) A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film. Biosens Bioelectron 89:565–569

    Article  CAS  PubMed  Google Scholar 

  33. Zhu LM, Luo LQ, Wang ZX (2012) DNA Electrochemical biosensor based on thionine-graphene nanocomposite. Biosens Bioelectron 35:507–511

    Article  CAS  PubMed  Google Scholar 

  34. Yang T, Meng L, Wang XX, Wang LL, Jiao K (2013) Direct electrochemical DNA detection originated from the self-redox signal of sulfonated polyaniline enhanced by graphene oxide in neutral solution. ACS Appl Mater Interfaces 5:10889–10894

    Article  CAS  PubMed  Google Scholar 

  35. Yang JM, Yin XS, Xia M, Zhang W (2018) Tungsten disulfide nanosheets supported poly(xanthurenic acid) as a signal transduction interface for electrochemical genosensing applications. RSC Adv 8:39703–39709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang JM, Ma MH, Zhang W (2020) Self-signal electrochemical monitoring of hybridization of nucleic acids based on riboflavine sodium phosphate decorated WS2 nanosheets. J Electrochem Soc 167:027502

    Article  CAS  Google Scholar 

Download references

Funding

This work was financed by the Natural Science Foundation of Shandong Province (Nos. ZR2021MB131, ZR2017QB013, and ZR2021MB105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 289 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Hu, X. & Zhang, W. Electrochemical self-signal switch for determination of KRAS gene employing riboflavin 5’-adenosine diphosphate functionalized MoS2 nanosheets. J Solid State Electrochem 26, 1493–1500 (2022). https://doi.org/10.1007/s10008-022-05186-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05186-y

Keywords

Navigation