Skip to main content
Log in

High-performance chemical mechanical polishing of GCr15 bearing steel enabled by the synergistic action of oxalic acid and H2O2

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Excellent surface quality is strongly needed for improving the service performance of bearings under severe lubrication conditions. In this study, chemical mechanical polishing (CMP) was used to process GCr15 bearing steel. Oxalic acid and H2O2 were used as critical additives in the CMP slurries. In the presence of oxalic acid and with the increasing H2O2, the material removal rate (MRR) first increases sharply, then gradually decreases and reaches a plateau, and then decreases again. In particular, with the addition of 0.1 M oxalic acid and 1.5 wt% H2O2, a satisfactory CMP performance can be realized. The MRR is as high as 462 nm/min, and the surface roughness Ra is as low as 2.1 nm. During the CMP process, the surface film is composed of insoluble Fe3+ oxides and Fe-oxalic acid compounds. Insoluble Fe3+ oxides and FeC2O4 can effectively suppress the corrosion, leading to the low surface roughness. The formation of Fe-oxalic acid compounds, especially soluble ones, may weaken the surface film, resulting in the high MRR. A one-step CMP method was developed. Within 14 min, the Ra of GCr15 steel decreases from 249.3 nm to about 2.0 nm. This study provides a promising CMP method for bearing steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yin F, Hua L, Mao H, Han X (2013) Constitutive modeling for flow behavior of GCr15 steel under hot compression experiments. Mater Design 43:393–401. https://doi.org/10.1016/j.matdes.2012.07.009

    Article  CAS  Google Scholar 

  2. Beswick JM (ed) (2002) Bearing steel technology. ASTM International, Philadelphia, PA

  3. Ueda T, Mitamura N (2009) Mechanism of dent initiated flaking and bearing life enhancement technology under contaminated lubrication condition. Part II: Effect of rolling element surface roughness on flaking resulting from dents, and life enhancement technology of rolling bearings under contaminated lubrication condition. Tribol Int 42(11):1832–1837. https://doi.org/10.1016/j.triboint.2008.12.010

    Article  CAS  Google Scholar 

  4. Sedlaček M, Podgornik B, Vižintin J (2009) Influence of surface preparation on roughness parameters, friction and wear. Wear 266(3):482–487. https://doi.org/10.1016/j.wear.2008.04.017

    Article  CAS  Google Scholar 

  5. Kao MJ, Hsu FC, Peng DX (2014) Synthesis and characterization of SiO2 nanoparticles and their efficacy in chemical mechanical polishing steel substrate. Adv Mater Sci Eng 2014:1–8. https://doi.org/10.1155/2014/691967

    Article  CAS  Google Scholar 

  6. Peng D-X (2014) Optimization of chemical mechanical polishing parameters on surface roughness of steel substrate with aluminum nanoparticles via Taguchi approach. Ind Lubr Tribol 66(6):685–690. https://doi.org/10.1108/ilt-07-2012-0063

    Article  Google Scholar 

  7. Peng D-X (2014) Chemical mechanical polishing of steel substrate using aluminum nanoparticles abrasive slurry. Ind Lubr Tribol 66(1):124–130. https://doi.org/10.1108/ilt-10-2011-0078

    Article  Google Scholar 

  8. Jiang L, He Y, Luo J (2015) Chemical mechanical polishing of steel substrate using colloidal silica-based slurries. Appl Surf Sci 330:487–495. https://doi.org/10.1016/j.apsusc.2015.01.016

    Article  CAS  Google Scholar 

  9. Wu H, Jiang L, Liu J, Deng C, Huang H, Qian L (2020) Efficient chemical mechanical polishing of AISI 52100 bearing steel with TiSol-NH4 dispersion-based slurries. Tribol Lett 68(1):34. https://doi.org/10.1007/s11249-020-1274-4

    Article  CAS  Google Scholar 

  10. Liu J, Jiang L, Wu H, Zhong X, Qian L (2021) Performance of carboxyl groups in chemical mechanical polishing of GCr15 bearing steel: Effects of carbon chain length and pH. Tribol Lett 69(4):161. https://doi.org/10.1007/s11249-021-01532-9

    Article  CAS  Google Scholar 

  11. Li J, Liu Y, Wang T, Lu X, Luo J (2013) Electrochemical investigation of copper passivation kinetics and its application to low-pressure CMP modeling. Appl Surf Sci 265:764–770. https://doi.org/10.1016/j.apsusc.2012.11.106

    Article  CAS  Google Scholar 

  12. Liu J, Jiang L, Wu H, Zhao T, Qian L (2020) 5-Methyl-1H-Benzotriazole as an effective corrosion inhibitor for ultra-precision chemical mechanical polishing of bearing steel. J Electrochem Soc 167(13):131502. https://doi.org/10.1149/1945-7111/abb0d9

    Article  CAS  Google Scholar 

  13. Wu H, Jiang L, Zhong X, Liu J, Qin N, Qian L (2020) Exploring the role of −NH2 functional groups of ethylenediamine in chemical mechanical polishing of GCr15 bearing steel. Friction. https://doi.org/10.1007/s40544-020-0460-6

    Article  Google Scholar 

  14. Lee SO, Tran T, Jung BH, Kim SJ, Kim MJ (2007) Dissolution of iron oxide using oxalic acid. Hydrometallurgy 87(3):91–99. https://doi.org/10.1016/j.hydromet.2007.02.005

    Article  CAS  Google Scholar 

  15. Borghi EB, Alí SP, Morando PJ, Blesa MA (1996) Cleaning of stainless steel surfaces and oxide dissolution by malonic and oxalic acids. J Nucl Mater 229:115–123. https://doi.org/10.1016/0022-3115(95)00201-4

    Article  CAS  Google Scholar 

  16. Gorantla VRK, Babel A, Pandija S, Babu SV (2005) Oxalic acid as a complexing agent in CMP slurries for copper. Electrochem Solid-State Lett 8(5):G131–G134. https://doi.org/10.1149/1.1883873

    Article  CAS  Google Scholar 

  17. Li Y (2007) Microelectronic applications of chemical mechanical planarization. John Wiley & Sons, Inc., Hoboken, New Jersey, USA. https://doi.org/10.1002/9780470180907

  18. Zhao D, Lu X (2013) Chemical mechanical polishing: Theory and experiment. Friction 1(4):306–326. https://doi.org/10.1007/s40544-013-0035-x

    Article  Google Scholar 

  19. Stahl PH, Wermuth CG (2008) Handbook of pharmaceutical salts properties, selection, and use. Wiley-VCH

    Google Scholar 

  20. Locke MJ, McIver RT (1983) Effect of solvation on the acid/base properties of glycine. J Am Chem Soc 105(13):4226–4232. https://doi.org/10.1021/ja00351a017

    Article  CAS  Google Scholar 

  21. University W (2016) Analytical Chemistry (in Chinese). Higher Education Press, Beijing

    Google Scholar 

  22. Panias D, Taxiarchou M, Paspaliaris I, Kontopoulos A (1996) Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions. Hydrometallurgy 42(2):257–265. https://doi.org/10.1016/0304-386X(95)00104-O

    Article  CAS  Google Scholar 

  23. Kim YJ, Kwon OJ, Kang MC, Kim JJ (2011) Effects of the functional groups of complexing agents and Cu oxide formation on Cu dissolution behaviors in Cu CMP process. J Electrochem Soc 158(2):H190–H196. https://doi.org/10.1149/1.3522811

    Article  CAS  Google Scholar 

  24. Martell AE, Motekaitis RJ, Chen D, Hancock RD, McManus D (1996) Selection of new Fe(III)/Fe(II) chelating agents as catalysts for the oxidation of hydrogen sulfide to sulfur by air. Can J Chem 74(10):1872–1879. https://doi.org/10.1139/v96-210

    Article  CAS  Google Scholar 

  25. Wu H, Jiang L, Zhong X, Liu J, Qin N, Qian L (2021) Exploring the role of −NH2 functional groups of ethylenediamine in chemical mechanical polishing of GCr15 bearing steel. Friction 9(6):1673–1687. https://doi.org/10.1007/s40544-020-0460-6

    Article  CAS  Google Scholar 

  26. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257(7):2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  27. Keller P, Strehblow H-H (2004) XPS investigations of electrochemically formed passive layers on Fe/Cr-alloys in 0.5 M H2SO4. Corros Sci 46(8):1939–1952. https://doi.org/10.1016/j.corsci.2004.01.007

    Article  CAS  Google Scholar 

  28. Lin T-C, Seshadri G, Kelber JA (1997) A consistent method for quantitative XPS peak analysis of thin oxide films on clean polycrystalline iron surfaces. Appl Surf Sci 119(1):83–92. https://doi.org/10.1016/S0169-4332(97)00167-0

    Article  CAS  Google Scholar 

  29. Taheri P, Wielant J, Hauffman T, Flores JR, Hannour F, de Wit JHW, Mol JMC, Terryn H (2011) A comparison of the interfacial bonding properties of carboxylic acid functional groups on zinc and iron substrates. Electrochim Acta 56(4):1904–1911. https://doi.org/10.1016/j.electacta.2010.10.079

    Article  CAS  Google Scholar 

  30. Huang J, Wu X, Han E-H (2009) Influence of pH on electrochemical properties of passive films formed on Alloy 690 in high temperature aqueous environments. Corros Sci 51(12):2976–2982. https://doi.org/10.1016/j.corsci.2009.08.002

    Article  CAS  Google Scholar 

  31. Lee W-J (2003) Inhibiting effects of imidazole on copper corrosion in 1 M HNO3 solution. Mater Sci Eng, A 348(1):217–226. https://doi.org/10.1016/S0921-5093(02)00734-7

    Article  CAS  Google Scholar 

  32. Amin MA, Abd El-Rehim SS, El-Sherbini EEF, Bayoumi RS (2007) The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid: Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies. Electrochim Acta 52(11):3588–3600. https://doi.org/10.1016/j.electacta.2006.10.019

    Article  CAS  Google Scholar 

  33. Cao C (2008) Principles of electrochemistry of corrosion (in Chinese). Chemistry and Industry Press

  34. Bordbar-Khiabani A, Ebrahimi S, Yarmand B (2019) Highly corrosion protection properties of plasma electrolytic oxidized titanium using rGO nanosheets. Appl Surf Sci 486:153–165. https://doi.org/10.1016/j.apsusc.2019.05.026

    Article  CAS  Google Scholar 

  35. Sekine I, Okano C, Yuasa M (1990) The corrosion behaviour of ferritic stainless steel in oxalic acid solutions. Corros Sci 30(4):351–366. https://doi.org/10.1016/0010-938X(90)90043-5

    Article  CAS  Google Scholar 

  36. Beverskog B, Puigdomenech I (1996) Revised pourbaix diagrams for iron at 25–300 °C. Corros Sci 38(12):2121–2135. https://doi.org/10.1016/S0010-938X(96)00067-4

    Article  CAS  Google Scholar 

  37. Dong J, Dong J, Han E, Liu C, Ke W (2009) Rusting evolvement of mild steel under wet/dry cyclic condition with pH 4.00 NaHSO3 solution. Corros Sci Prot Technol (in Chinese) 21(1):1–4

    Google Scholar 

  38. Dong J, Wei K (2009) The accelerated test of simulated atmospheric corrosion and the rust evolution of low carbon steel. Electrochemistry (in Chinese) 15(02):170–178

    CAS  Google Scholar 

  39. Xu L, Wang J (2011) A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J Hazard Mater 186(1):256–264. https://doi.org/10.1016/j.jhazmat.2010.10.116

    Article  CAS  PubMed  Google Scholar 

  40. Kang YW, Hwang K-Y (2000) Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Res 34(10):2786–2790. https://doi.org/10.1016/S0043-1354(99)00388-7

    Article  CAS  Google Scholar 

  41. Imlay J, Chin S, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240(4852):640–642. https://doi.org/10.1126/science.2834821

    Article  CAS  PubMed  Google Scholar 

  42. Du CW, Li XG, Liang P, Liu ZY, Jia GF, Cheng YF (2009) Effects of Microstructure on Corrosion of X70 Pipe Steel in an Alkaline Soil. J Mater Eng Perform 18(2):216–220. https://doi.org/10.1007/s11665-008-9280-y

    Article  CAS  Google Scholar 

  43. Tripathi S, Choi S, Doyle FM, Dornfeld DA (2009) Integrated tribo-chemical modeling of copper CMP. In: MRS Spring Meeting, San Francisco, April 14–16, 2009. eScholarship University of California

  44. Choi S, Tripathi S, Dornfeld DA, Doyle FM (2010) Copper CMP modeling: Millisecond scale adsorption kinetics of BTA in glycine-containing solutions at pH 4. J Electrochem Soc 157(12):H1153–H1159. https://doi.org/10.1149/1.3499217

    Article  CAS  Google Scholar 

  45. Ramakrishnan S, Janjam SVSB, Patri UB, Roy D, Babu SV (2007) Comparison of dicarboxylic acids as complexing agents for abrasive-free chemical mechanical planarization of copper. Microelectron Eng 84(1):80–86. https://doi.org/10.1016/j.mee.2006.08.011

    Article  CAS  Google Scholar 

  46. Balmer ME, Sulzberger B (1999) Atrazine degradation in irradiated iron/oxalate systems: Effects of pH and oxalate. Environ Sci Technol 33(14):2418–2424. https://doi.org/10.1021/es9808705

    Article  CAS  Google Scholar 

  47. Zhang Z, Liu W, Song Z, Hu X (2010) Two-step chemical mechanical polishing of sapphire substrate. J Electrochem Soc 157(6):H688. https://doi.org/10.1149/1.3410116

    Article  CAS  Google Scholar 

  48. Jiang L, He Y, Yang Y, Luo J (2015) Chemical mechanical polishing of stainless steel as solar cell substrate. ECS J Solid State Sci Technol 4(5):P162–P170. https://doi.org/10.1149/2.0171505jss

    Article  CAS  Google Scholar 

  49. Wang C, Gao J, Tian J, Niu X, Liu Y (2013) Chemical mechanical planarization of barrier layers by using a weakly alkaline slurry. Microelectron Eng 108:71–75. https://doi.org/10.1016/j.mee.2013.04.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by the National Key R&D Program of China (2020YFA0711001), National Natural Science Foundation of China (51975488 and 51991373), National Key R&D Program of China (2018YFB2000400), Fundamental Research Funds for the Central Universities (2682021CG011), and Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms (BZ0388201902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Jiang, L., Xiao, G. et al. High-performance chemical mechanical polishing of GCr15 bearing steel enabled by the synergistic action of oxalic acid and H2O2. J Solid State Electrochem 26, 809–820 (2022). https://doi.org/10.1007/s10008-022-05122-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05122-0

Keywords

Navigation