Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. https://doi.org/10.1038/nmat2297
CAS
Article
PubMed
Google Scholar
Naoi K, Simon P (2008) New materials and new confgurations for advanced electrochemical capacitors. Electrochem Soc Interface 17:34–37. https://doi.org/10.1149/2.f04081if
CAS
Article
Google Scholar
Salanne M, Rotenberg B, Naoi K et al (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy 1:16070. https://doi.org/10.1038/nenergy.2016.70
CAS
Article
Google Scholar
Zhang Y, Ru Y, Gao HL et al (2019) Sol-gel synthesis and electrochemical performance of NiCo2O4 nanoparticles for supercapacitor applications. J Electrochem Sci Eng 9:243–253. https://doi.org/10.5599/jese.690
CAS
Article
Google Scholar
Yu X, Li B (2019) In-situ synthesis of mesoporous carbon/iron sulfide nanocomposite for supercapacitors. J Electrochem Sci Eng 9:55–62. https://doi.org/10.5599/jese.572
CAS
Article
Google Scholar
Yadav M (2020) Metal oxides nanostructure-based electrode materials for supercapacitor application. J Nanoparticle Res 22. https://doi.org/10.1007/s11051-020-05103-2
Liu R, Zhou A, Zhang X et al (2021) Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chem Eng J 412:128611. https://doi.org/10.1016/j.cej.2021.128611
Naskar P, Maiti A, Chakraborty P et al (2021) Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers. J Mater Chem A 9:1970–2017. https://doi.org/10.1039/D0TA09655E
CAS
Article
Google Scholar
Holze R (2020) Composites and copolymers containing redox-active molecules and intrinsically conducting polymers as active masses for supercapacitor electrodes—an introduction. Polymers 12:1835. https://doi.org/10.3390/polym12081835
CAS
Article
PubMed Central
Google Scholar
Kong J, Yue Q, Wang B et al (2013) Short communication. J Anal Appl Pyrolysis 104:710–713. https://doi.org/10.1016/j.jaap.2013.05.024
CAS
Article
Google Scholar
Lee H-M, Kim TA H-G, An K-H, Śliwak A (2014) Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation. Carbon Lett 15:71–76.https://doi.org/10.5714/CL.2014.15.1.071
Roh JS (2003) Microstructural changes during activation process of isotopic carbon fibers using CO2 Gas(I)-XRD Study. Korean J Mater Res 13:742–748. https://doi.org/10.3740/MRSK.2003.13.11.742
CAS
Article
Google Scholar
Fu K, Yue Q, Gao B et al (2013) Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation. Chem Eng J 228:1074–1082. https://doi.org/10.1016/j.cej.2013.05.028
Bang JH, Lee HM, An KH, Kim BJ (2017) A study on optimal pore development of modified commercial activated carbons for electrode materials of supercapacitors. Appl Surf Sci 415:61–66. https://doi.org/10.1016/j.apsusc.2017.01.007
CAS
Article
Google Scholar
Ruiz V, Blanco C, Granda M et al (2007) Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors. J Appl Electrochem 37:717–721. https://doi.org/10.1007/s10800-007-9305-5
CAS
Article
Google Scholar
Li Y, Pu Z, Sun Q, Pan N (2021) A review on novel activation strategy on carbonaceous materials with special morphology/texture for electrochemical storage. J Energy Chem 60:572–590. https://doi.org/10.1016/j.jechem.2021.01.017
Rajaputra SS, Pennada N, Yerramilli A, Kummara NM (2021) Graphene based sulfonated polyvinyl alcohol hydrogel nanocomposite for flexible supercapacitors. J Electrochem Sci Eng 11:197–207. https://doi.org/10.5599/JESE.1031
Article
Google Scholar
Pang Z, Li G, Xiong X et al (2021) Molten salt synthesis of porous carbon and its application in supercapacitors: a review. J Energy Chem 61:622–640. https://doi.org/10.1016/j.jechem.2021.02.020
Wen Y, Kok MDR, Tafoya JPV et al (2021) Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: a review. J Energy Chem 59:492–529. https://doi.org/10.1016/j.jechem.2020.11.014
Sačer D, Spajić I, Kraljić Roković M, Mandić Z (2018) New insights into chemical and electrochemical functionalization of graphene oxide electrodes by o-phenylenediamine and their potential applications. J Mater Sci 53:15285–15297. https://doi.org/10.1007/s10853-018-2693-6
CAS
Article
Google Scholar
Lee SJ, Theerthagiri J, Nithyadharseni P et al (2021) Heteroatom-doped graphene-based materials for sustainable energy applications: a review. Renew Sustain Energy Rev 143:110849. https://doi.org/10.1016/j.rser.2021.110849
Liu P, Verbrugge M, Soukiazian S (2006) Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors. J Power Sources 156:712–718. https://doi.org/10.1016/j.jpowsour.2005.05.055
CAS
Article
Google Scholar
Chmiola J, Yushin G, Gogotsi Y et al (2006) Anomalous increase in carbon at pore sizes less than 1 nanometer. Science 313:1760–1763. https://doi.org/10.1126/science.1132195
CAS
Article
PubMed
Google Scholar
Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507. https://doi.org/10.1016/j.carbon.2006.05.022
CAS
Article
Google Scholar
Mysyk R, Raymundo-Piñero E, Pernak J, Béguin F (2009) Confinement of symmetric tetraalkylammonium ions in nanoporous carbon electrodes of electric double-layer capacitors. J Phys Chem C 113:13443–13449. https://doi.org/10.1021/jp901539h
CAS
Article
Google Scholar
Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A et al (2003) Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon 41:1765–1775. https://doi.org/10.1016/S0008-6223(03)00141-6
Kim I-T, Egashira M, Yoshimoto N, Morita M (2011) On the electric double-layer structure at carbon electrode/organic electrolyte solution interface analyzed by ac impedance and electrochemical quartz-crystal microbalance responses. Electrochim Acta 56:7319–7326. https://doi.org/10.1016/j.electacta.2011.06.044
CAS
Article
Google Scholar
Ohta T, Kim IT, Egashira M et al (2012) Effects of electrolyte composition on the electrochemical activation of alkali-treated soft carbon as an electric double-layer capacitor electrode. J Power Sources 198:408–415. https://doi.org/10.1016/j.jpowsour.2011.10.006
CAS
Article
Google Scholar
Vix-Guterl C, Frackowiak E, Jurewicz K et al (2005) Electrochemical energy storage in ordered porous carbon materials. Carbon 43:1293–1302. https://doi.org/10.1016/j.carbon.2004.12.028
CAS
Article
Google Scholar
Chmiola J, Largeot C, Taberna P-L et al (2008) Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew Chemie Int Ed 47:3392–3395. https://doi.org/10.1002/anie.200704894
Decaux C, Matei Ghimbeu C, Dahbi M et al (2014) Influence of electrolyte ion–solvent interactions on the performances of supercapacitors porous carbon electrodes. J Power Sources 263:130–140. https://doi.org/10.1016/j.jpowsour.2014.04.024
Mecklenfeld A, Raabe G (2020) GAFF/IPolQ-Mod+LJ-Fit: Optimized force field parameters for solvation free energy predictions. ADMET DMPK 8:274–296. https://doi.org/10.5599/admet.837
Article
Google Scholar
Dobrota AS, Pašti IA (2020) Chemisorption as the essential step in electrochemical energy conversion. J Electrochem Sci Eng 10:141–159. https://doi.org/10.5599/jese.742
CAS
Article
Google Scholar
Tsay KC, Zhang L, Zhang J (2012) Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochim Acta 60:428–436. https://doi.org/10.1016/j.electacta.2011.11.087
CAS
Article
Google Scholar
Abbas Q, Pajak D, Frąckowiak E, Béguin F (2014) Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte. Electrochim Acta 140:132–138. https://doi.org/10.1016/jelectacta2014.04.096
Daraghmeh A, Hussain S, Servera L et al (2017) Impact of binder concentration and pressure on performance of symmetric CNFs based supercapacitors. Electrochim Acta 245:531–538. https://doi.org/10.1016/j.electacta.2017.05.186
CAS
Article
Google Scholar
MA, Paul A (2017) Importance of electrode preparation methodologies in supercapacitor applications. ACS Omega 2:8039–8050. https://doi.org/10.1021/acsomega.7b01275
CAS
Article
Google Scholar
Tran HY, Wohlfahrt-Mehrens M, Dsoke S (2017) Influence of the binder nature on the performance and cycle life of activated carbon electrodes in electrolytes containing Li-salt. J Power Sources 342:301–312. https://doi.org/10.1016/j.jpowsour.2016.12.056
CAS
Article
Google Scholar
Varzi A, Passerini S (2015) Enabling high areal capacitance in electrochemical double layer capacitors by means of the environmentally friendly starch binder. J Power Sources 300:216–222. https://doi.org/10.1016/j.jpowsour.2015.09.065
CAS
Article
Google Scholar
Varzi A, Raccichini R, Marinaro M et al (2016) Probing the characteristics of casein as green binder for non-aqueous electrochemical double layer capacitors’ electrodes. J Power Sources 326:672–679. https://doi.org/10.1016/j.jpowsour.2016.03.072
Lufrano F, Staiti P, Minutoli M (2004) Influence of Nafion content in electrodes on performance of carbon supercapacitors. J Electrochem Soc 151:A64. https://doi.org/10.1149/1.1626670
CAS
Article
Google Scholar
Yamagata M, Ikebe S, Soeda K, Ishikawa M (2013) Ultrahigh-performance nonaqueous electric double-layer capacitors using an activated carbon composite electrode with alginate. RSC Adv 3:1037–1040. https://doi.org/10.1039/C2RA22188H
CAS
Article
Google Scholar
Sopčić S, Antonić D, Mandić Z et al (2018) Single and multi-frequency impedance characterization of symmetric activated carbon single capacitor cells. J Electrochem Sci Eng 8:183–195. https://doi.org/10.5599/jese.536
CAS
Article
Google Scholar
Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6
Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292. https://doi.org/10.1149/1.1543948
CAS
Article
Google Scholar
De Levie R (1967) Electrochemical response of porous and rough electrodes. Adv Electrochem Electrochem Eng 6:329–397
Google Scholar
Pohlmann S, Lobato B, Centeno TA, Balducci A (2013) The influence of pore size and surface area of activated carbons on the performance of ionic liquid based supercapacitors. Phys Chem Chem Phys 15:17287–17294. https://doi.org/10.1039/C3CP52909F
CAS
Article
PubMed
Google Scholar
Petrić V, Mandić Z (2021) On the need for simultaneous electrochemical testing of positive and negative electrodes in carbon supercapacitors. Electrochim Acta 384:138372. https://doi.org/10.1016/j.electacta.2021.138372
Balducci A (2016) Electrolytes for high voltage electrochemical double layer capacitors: A perspective article. J Power Sources 326:534–540. https://doi.org/10.1016/j.jpowsour.2016.05.029
CAS
Article
Google Scholar
Pal B, Yang S, Ramesh S et al (2019) Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv 1:3807–3835. https://doi.org/10.1039/c9na00374f
Article
Google Scholar
Han J, Yoshimoto N, Todorov YM et al (2018) Characteristics of the electric double-layer capacitors using organic electrolyte solutions containing different alkylammonium cations. Electrochim Acta 281:510–516. https://doi.org/10.1016/j.electacta.2018.06.012
CAS
Article
Google Scholar
Koh AR, Hwang B, Chul Roh K, Kim K (2014) The effect of the ionic size of small quaternary ammonium BF4 salts on electrochemical double layer capacitors. Phys Chem Chem Phys 16:15146–15151. https://doi.org/10.1039/c4cp00949e
CAS
Article
PubMed
Google Scholar
Arulepp M, Permann L, Leis J et al (2004) Influence of the solvent properties on the characteristics of a double layer capacitor. J Power Sources 133:320–328. https://doi.org/10.1016/j.jpowsour.2004.03.026
CAS
Article
Google Scholar
CENELEC (2012) Electric double-layer capacitors for use in hybrid electric vehicles – Test methods for electrical characteristics (IEC 62576:2009; EN 62576:2010) Na
Delacourt C, Ridgway PL, Srinivasan V, Battaglia V (2014) Measurements and simulations of electrochemical impedance spectroscopy of a three-electrode coin cell design for Li-ion cell testing. J Electrochem Soc 161:A1253–A1260. https://doi.org/10.1149/2.0311409jes
CAS
Article
Google Scholar
Murer N, Diard JP, Petrescu B (2020) The effects of time-variance on impedance measurements: examples of a corroding electrode and a battery cell. J Electrochem Sci Eng 10:127–140. https://doi.org/10.5599/jese.725
Article
Google Scholar
Sugano K (2021) Lost in modelling and simulation? ADMET DMPK 9:75–109. https://doi.org/10.5599/admet.923
Article
Google Scholar
Avdeef A (2021) Do you know your r2? ADMET DMPK J 9:69–74
Google Scholar
Kaus M, Kowal J, Sauer D (2010) Modelling the effects of charge redistribution during self-discharge of supercapacitors. Electrochim Acta 55:7516–7523. https://doi.org/10.1016/j.electacta.2010.01.002
CAS
Article
Google Scholar
Kowal J, Avaroglu E, Chamekh F et al (2011) Detailed analysis of the self-discharge of supercapacitors. J Power Sources 196:573–579. https://doi.org/10.1016/j.jpowsour.2009.12.028
Roberts AJ, Slade RCT (2010) Effect of specific surface area on capacitance in asymmetric carbon/α-MnO2 supercapacitors. Electrochim Acta 55:7460–7469. https://doi.org/10.1016/j.electacta.2010.01.004
Ruiz V, Blanco C, Santamaría R et al (2009) An activated carbon monolith as an electrode material for supercapacitors. Carbon 47:195–200. https://doi.org/10.1016/j.carbon.2008.09.048
EC-Lab – Application Note (2017) # 62 How to measure the internal resistance of a battery using EIS ? 1–6
Moškon J, Talian SD, Dominko R, Gaberšček M (2020) Advances in understanding li battery mechanisms using impedance spectroscopy. J Electrochem Sci Eng 10:79–93. https://doi.org/10.5599/jese.734
CAS
Article
Google Scholar
Dsoke S, Tian X, Täubert C et al (2013) Strategies to reduce the resistance sources on electrochemical double layer capacitor electrodes. J Power Sources 238:422–429. https://doi.org/10.1016/j.jpowsour.2013.04.031
Allagui A, Freeborn TJ, Elwakil AS, Maundy BJ (2016) Reevaluation of performance of electric double-layer capacitors from constant-current charge/discharge and cyclic voltammetry. Sci Rep 6:38568. https://doi.org/10.1038/srep38568
CAS
Article
PubMed
PubMed Central
Google Scholar
Batalla García B, Feaver AM, Zhang Q et al (2008) Effect of pore morphology on the electrochemical properties of electric double layer carbon cryogel supercapacitors. J Appl Phys 104:14305. https://doi.org/10.1063/1.2949263
CAS
Article
Google Scholar
Karden E, Buller S, De Doncker RW (2002) A frequency-domain approach to dynamical modeling of electrochemical power sources. Electrochim Acta 47:2347–2356. https://doi.org/10.1016/S0013-4686(02)00091-9
Atebamba J-M, Moskon J, Pejovnik S, Gaberscek M (2010) On the interpretation of measured impedance spectra of insertion cathodes for lithium-ion batteries. J Electrochem Soc 157:A1218. https://doi.org/10.1149/1.3489353
CAS
Article
Google Scholar
Gaberšček M, Moškon J, Erjavec B et al (2008) The importance of interphase contacts in li ion electrodes: the meaning of the high-frequency impedance arc. Electrochem Solid-State Lett 11:A170. https://doi.org/10.1149/1.2964220
CAS
Article
Google Scholar
Li X, Rong J, Wei B (2010) Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 4:6039–6049. https://doi.org/10.1021/nn101595y
CAS
Article
PubMed
Google Scholar